cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071144 Numbers n such that sum of distinct primes dividing n is divisible by the largest prime dividing n. Also n has exactly 5 distinct prime factors and n is squarefree.

This page as a plain text file.
%I A071144 #17 Jan 10 2025 10:07:59
%S A071144 3570,8970,10626,15015,16530,20706,24738,24882,36890,38130,44330,
%T A071144 49938,51051,52170,54834,55986,59570,62985,68370,73554,74613,77330,
%U A071144 79458,81770,87290,91266,96162,96866,103730,106314,116466,123234,128570,129426,129930,138890
%N A071144 Numbers n such that sum of distinct primes dividing n is divisible by the largest prime dividing n. Also n has exactly 5 distinct prime factors and n is squarefree.
%H A071144 Donovan Johnson, <a href="/A071144/b071144.txt">Table of n, a(n) for n = 1..1000</a>
%F A071144 A008472(n)/A006530(n) is an integer; A001221(n) = 5, n is squarefree.
%e A071144 n = pqrst, p<q<r<s<t, primes, p+q+r+s+t = kt; n = 8970 = 2*3*5*13*23, sum = 46 = 2*23.
%t A071144 ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] sb[x_] := Apply[Plus, ba[x]] ma[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] amo[x_] := Abs[MoebiusMu[x]] Do[s=sb[n]/ma[n]; If[IntegerQ[s]&&Equal[lf[n], 5]&& !Equal[amo[n], 0], Print[{n, ba[n]}]], {n, 2, 1000000}]
%t A071144 sdpQ[n_]:=Module[{fi=FactorInteger[n][[;;,1]]},Length[fi]==5&&SquareFreeQ[n]&&Mod[Total[ fi],Max[fi]]==0]; Select[Range[150000],sdpQ] (* _Harvey P. Dale_, May 04 2023 *)
%Y A071144 Cf. A008472, A006530, A000961, A025475, A037074, A071139-A071147.
%K A071144 nonn
%O A071144 1,1
%A A071144 _Labos Elemer_, May 13 2002