This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A071150 #21 Mar 29 2021 20:59:30 %S A071150 3,29,53,61,251,263,293,317,359,383,503,641,647,787,821,827,911,1097, %T A071150 1163,1249,1583,1759,1783,1861,1907,2017,2287,2297,2593,2819,2837, %U A071150 2861,3041,3079,3181,3461,3541,3557,3643,3779,4259,4409,4457,4597,4691,4729,4789 %N A071150 Primes p such that the sum of all odd primes <= p is also a prime. %H A071150 R. J. Mathar, <a href="/A071150/b071150.txt">Table of n, a(n) for n = 1..5908</a> %e A071150 29 is a prime and 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 = 127 (also a prime), so 29 is a term. - _Jon E. Schoenfield_, Mar 29 2021 %p A071150 SoddP := proc(n) %p A071150 option remember; %p A071150 if n <= 2 then %p A071150 0; %p A071150 elif isprime(n) then %p A071150 procname(n-1)+n; %p A071150 else %p A071150 procname(n-1); %p A071150 fi ; %p A071150 end proc: %p A071150 isA071150 := proc(n) %p A071150 if isprime(n) and isprime(SoddP(n)) then %p A071150 true; %p A071150 else %p A071150 false; %p A071150 end if; %p A071150 end proc: %p A071150 n := 1 ; %p A071150 for i from 3 by 2 do %p A071150 if isA071150(i) then %p A071150 printf("%d %d\n",n,i) ; %p A071150 n := n+1 ; %p A071150 end if; %p A071150 end do: # _R. J. Mathar_, Feb 13 2015 %t A071150 Function[s, Select[Array[Take[s, #] &, Length@ s], PrimeQ@ Total@ # &][[All, -1]]]@ Prime@ Range[2, 640] (* _Michael De Vlieger_, Jul 18 2017 *) %t A071150 Module[{nn=650,pr},pr=Prime[Range[2,nn]];Table[If[PrimeQ[Total[Take[ pr, n]]], pr[[n]],Nothing],{n,nn-1}]] (* _Harvey P. Dale_, May 12 2018 *) %o A071150 (Python) %o A071150 from sympy import isprime, nextprime %o A071150 def aupto(limit): %o A071150 p, s, alst = 3, 3, [] %o A071150 while p <= limit: %o A071150 if isprime(s): alst.append(p) %o A071150 p = nextprime(p) %o A071150 s += p %o A071150 return alst %o A071150 print(aupto(4789)) # _Michael S. Branicky_, Mar 29 2021 %Y A071150 Analogous to A013917. %Y A071150 Cf. A065091, A071148, A071149, A013916, A013917, A013918, A007504. %K A071150 easy,nonn %O A071150 1,1 %A A071150 _Labos Elemer_, May 13 2002