cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071160 Łukasiewicz words that are also valid asynchronic siteswap juggling patterns.

This page as a plain text file.
%I A071160 #23 May 02 2017 22:17:16
%S A071160 0,1,20,11,300,201,120,111,4000,3001,2020,2011,1300,1201,1120,1111,
%T A071160 50000,40001,30020,30011,20300,20201,20120,20111,14000,13001,12020,
%U A071160 12011,11300,11201,11120,11111,600000,500001,400020,400011,300300
%N A071160 Łukasiewicz words that are also valid asynchronic siteswap juggling patterns.
%C A071160 Note: this finite decimal representation works only up to the 511th term, as the 512th such word is already (10,0,0,0,0,0,0,0,0,0). The sequence A071161 shows the initial portion of this sequence sorted.
%H A071160 Peter J. Beek and Arthur Lewbel, <a href="http://www2.bc.edu/~lewbel/jugweb/science-1.html">The Science of Juggling</a>, Scientific American, Nov, 1995, Vol. 273, Number 5, pp. 92-97.
%H A071160 Joe Buhler and R. L. Graham, <a href="http://www.cecm.sfu.ca/organics/papers/buhler/index.html">Juggling Drops and Descents</a>, Amer. Math. Monthly, 101, (no. 6) 1994, 507 - 519.
%H A071160 Juggling Information Service, <a href="http://www.juggling.org/bin/mfs/JIS/help/siteswap/">Site Swap FAQs</a>
%H A071160 A. Karttunen, <a href="http://www.iki.fi/~kartturi/matikka/Nekomorphisms/gatomorf.htm">Gatomorphisms and other excursions amidst the plane trees and parenthesizations</a> (Includes the complete Scheme program for computing this sequence)
%H A071160 R. P. Stanley, <a href="http://www-math.mit.edu/~rstan/papers.html">Hipparchus, Plutarch, Schröder and Hough</a>, Am. Math. Monthly, Vol. 104, No. 4, p. 344, 1997.
%H A071160 OEIS Wiki, <a href="/wiki/Łukasiewicz_words">Łukasiewicz words</a>
%H A071160 <a href="/index/Lu#Lukasiewicz">Index entries for sequences related to Łukasiewicz</a>
%F A071160 Construction: starting from the most significant (the leftmost) bit, replace each 1-bit in the binary expansion of n with the distance to the next 1-bit to the right, allowing a cyclic wrap-over from the least-significant 1-bit to the most significant 1-bit. I.e. from 22 = 10110 in binary we get 20120, the 22nd term of this sequence.
%F A071160 a(n) = A071161(A054429(n)).
%Y A071160 Subset of A071153.
%Y A071160 Cf. A060495, A060498, A065177, A071162, A071163.
%K A071160 nonn,fini
%O A071160 0,3
%A A071160 _Antti Karttunen_, May 14 2002