This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A071160 #23 May 02 2017 22:17:16 %S A071160 0,1,20,11,300,201,120,111,4000,3001,2020,2011,1300,1201,1120,1111, %T A071160 50000,40001,30020,30011,20300,20201,20120,20111,14000,13001,12020, %U A071160 12011,11300,11201,11120,11111,600000,500001,400020,400011,300300 %N A071160 Łukasiewicz words that are also valid asynchronic siteswap juggling patterns. %C A071160 Note: this finite decimal representation works only up to the 511th term, as the 512th such word is already (10,0,0,0,0,0,0,0,0,0). The sequence A071161 shows the initial portion of this sequence sorted. %H A071160 Peter J. Beek and Arthur Lewbel, <a href="http://www2.bc.edu/~lewbel/jugweb/science-1.html">The Science of Juggling</a>, Scientific American, Nov, 1995, Vol. 273, Number 5, pp. 92-97. %H A071160 Joe Buhler and R. L. Graham, <a href="http://www.cecm.sfu.ca/organics/papers/buhler/index.html">Juggling Drops and Descents</a>, Amer. Math. Monthly, 101, (no. 6) 1994, 507 - 519. %H A071160 Juggling Information Service, <a href="http://www.juggling.org/bin/mfs/JIS/help/siteswap/">Site Swap FAQs</a> %H A071160 A. Karttunen, <a href="http://www.iki.fi/~kartturi/matikka/Nekomorphisms/gatomorf.htm">Gatomorphisms and other excursions amidst the plane trees and parenthesizations</a> (Includes the complete Scheme program for computing this sequence) %H A071160 R. P. Stanley, <a href="http://www-math.mit.edu/~rstan/papers.html">Hipparchus, Plutarch, Schröder and Hough</a>, Am. Math. Monthly, Vol. 104, No. 4, p. 344, 1997. %H A071160 OEIS Wiki, <a href="/wiki/Łukasiewicz_words">Łukasiewicz words</a> %H A071160 <a href="/index/Lu#Lukasiewicz">Index entries for sequences related to Łukasiewicz</a> %F A071160 Construction: starting from the most significant (the leftmost) bit, replace each 1-bit in the binary expansion of n with the distance to the next 1-bit to the right, allowing a cyclic wrap-over from the least-significant 1-bit to the most significant 1-bit. I.e. from 22 = 10110 in binary we get 20120, the 22nd term of this sequence. %F A071160 a(n) = A071161(A054429(n)). %Y A071160 Subset of A071153. %Y A071160 Cf. A060495, A060498, A065177, A071162, A071163. %K A071160 nonn,fini %O A071160 0,3 %A A071160 _Antti Karttunen_, May 14 2002