cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071174 Numbers whose sum of exponents is equal to the product of prime factors.

This page as a plain text file.
%I A071174 #32 Apr 26 2025 03:43:41
%S A071174 4,27,96,144,216,324,486,2560,3125,6400,16000,40000,57344,100000,
%T A071174 200704,250000,625000,702464,823543,1562500,2458624,3906250,8605184,
%U A071174 23068672,23914845,30118144,39858075,66430125,105413504,110716875,126877696,184528125,307546875,368947264,436207616
%N A071174 Numbers whose sum of exponents is equal to the product of prime factors.
%C A071174 Number k such that A001222(k) = A007947(k). - _Amiram Eldar_, Jun 24 2022
%H A071174 David A. Corneth, <a href="/A071174/b071174.txt">Table of n, a(n) for n = 1..10760</a> (terms <= 10^52)
%e A071174 57344 = 2^13 * 7^1 and 2*7 = 13+1 hence 57344 is in the sequence.
%e A071174 16000 = 2^7 * 5^3 and 2*5 = 7+3 hence 16000 is in the sequence.
%t A071174 q[n_] := Times @@(f = FactorInteger[n])[[;; , 1]] == Total[f[[;; , 2]]]; Select[Range[2, 10^5], q] (* _Amiram Eldar_, Jun 24 2022 *)
%o A071174 (PARI) for(n=1,200000,o=omega(n); if(prod(i=1,o, component(component(factor(n),1),i))==sum(i=1,o, component(component(factor(n),2),i)),print1(n,",")))
%o A071174 (Python)
%o A071174 from math import prod
%o A071174 from sympy import factorint
%o A071174 def ok(n): f = factorint(n); return sum(f[p] for p in f)==prod(p for p in f)
%o A071174 print(list(filter(ok, range(10**6)))) # _Michael S. Branicky_, Apr 27 2021
%Y A071174 Cf. A001222, A007947, A054411, A054412, A071175.
%K A071174 nonn,easy
%O A071174 1,1
%A A071174 _Benoit Cloitre_, Jun 10 2002
%E A071174 More terms from _Klaus Brockhaus_, Jun 12 2002
%E A071174 More terms from _Vladeta Jovovic_, Jun 13 2002