This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A071175 #22 Jun 24 2022 04:34:15 %S A071175 4,27,96,486,640,1440,2025,2400,2744,3024,3125,3528,3584,4032,4536, %T A071175 4860,5292,5625,9408,11907,12150,12348,14256,15360,16464,17424,20412, %U A071175 22400,22464,25344,31360,32805,36504,37500,39204,55566,56250,57624,59904,70304,71442 %N A071175 Numbers whose product of exponents is equal to the sum of prime factors. %C A071175 Number k such that A005361(k) = A008472(k). - _Amiram Eldar_, Jun 24 2022 %H A071175 Giovanni Resta, <a href="/A071175/b071175.txt">Table of n, a(n) for n = 1..10000</a> %e A071175 55566 = 2^1 * 3^4 * 7^3 and 1*4*3 = 2+3+7 hence 55566 is in the sequence. %t A071175 q[n_] := Total[(f = FactorInteger[n])[[;; , 1]]] == Times @@ f[[;; , 2]]; Select[Range[2, 10^5], q] (* _Amiram Eldar_, Jun 24 2022 *) %o A071175 (PARI) for(n=1,200000,o=omega(n); if(prod(i=1,o, component(component(factor(n),2),i))==sum(i=1,o, component(component(factor(n),1),i)),print1(n,","))) %o A071175 (Python) %o A071175 from math import prod %o A071175 from sympy import factorint %o A071175 def ok(n): f = factorint(n); return prod(f[p] for p in f)==sum(p for p in f) %o A071175 print(list(filter(ok, range(10**5)))) # _Michael S. Branicky_, Apr 27 2021 %Y A071175 Cf. A005361, A008472, A054411, A054412. %K A071175 easy,nonn %O A071175 1,1 %A A071175 _Benoit Cloitre_, Jun 10 2002