This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A071194 #16 Nov 17 2020 23:06:46 %S A071194 2,9,3,3,3,5,3,3,3,3,3,9,3,5,7,3,5,3,3,3,5,3,3,7,7,3,7,5,3,5,5,9,5,3, %T A071194 3,5,3,3,11,9,5,21,5,9,3,9,3,5,55,3,7,27,9,27,7,5,5,3,9,3,3,3,5,3,7,7, %U A071194 11,3,3,3,5,5,7,7,3,5,3,9,3,3,5,11,3,5,47,5,3,3,5,3,3,5,7,3,3,7,3,5,5,5,3 %N A071194 Length (>1) of shortest sequence of consecutive primes starting with prime(n) whose sum is also prime, or -1 if no such sequence exists. %H A071194 Charles R Greathouse IV, <a href="/A071194/b071194.txt">Table of n, a(n) for n = 1..10000</a> %e A071194 For n=1, start-prime = prime(1) = 2, 2+3=5 is prime, length=2, so a(1)=2; %e A071194 for n=2, start-prime = prime(2) = 3, 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 = 127 is prime, length=9, all shorter partial sums are composite, so a(2)=9; %e A071194 for n=160, prime(160) = 941, 941 + ... + 1609 = 121123 is prime, a(160)=95. %t A071194 Table[k = 2; While[CompositeQ@ Total@ Prime@ Range[n, n + k], k++]; k + 2 Boole[EvenQ@ k] - 1, {n, 120}] (* _Michael De Vlieger_, Jan 01 2017 *) %o A071194 (PARI) a(n,p=prime(n))=my(q=p,t=2); while(!isprime(p+=q=nextprime(q+1)),t++);t %o A071194 apply(p->a(0,p), primes(30)) \\ _Charles R Greathouse IV_, Jun 16 2015 %Y A071194 Cf. A071195, A071196, A071197, A071198. %K A071194 nonn %O A071194 1,1 %A A071194 _Labos Elemer_, May 16 2002 %E A071194 Escape clause added by _N. J. A. Sloane_, Nov 17 2020