This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A071231 #36 Sep 08 2022 08:45:06 %S A071231 0,1,136,3321,32896,195625,840456,2883601,8390656,21526641,50005000, %T A071231 107186761,215001216,407879641,737913736,1281470625,2147516416, %U A071231 3487920481,5510032776,8491846681,12800080000,18911526921,27438053896,39155632561,55037822976 %N A071231 a(n) = (n^8 + n^4)/2. %C A071231 Number of unoriented rows of length 8 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=136, there are 2^8=256 oriented arrangements of two colors. Of these, 2^4=16 are achiral. That leaves (256-16)/2=120 chiral pairs. Adding achiral and chiral, we get 136. - _Robert A. Russell_, Nov 13 2018 %D A071231 T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002. %H A071231 Vincenzo Librandi, <a href="/A071231/b071231.txt">Table of n, a(n) for n = 0..2000</a> %H A071231 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1). %F A071231 From _Harvey P. Dale_, Oct 11 2011: (Start) %F A071231 a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9); a(0)=0, a(1)=1, a(2)=136, a(3)=3321, a(4)=32896, a(5)=195625, a(6)=840456, a(7)=2883601, a(8)=8390656. %F A071231 G.f.: -((x*(x+1)*(x*(x*(x*(x*(x*(x+126)+2007)+5812)+2007)+126)+1))/ (x-1)^9). (End) %F A071231 From _Robert A. Russell_, Nov 13 2018: (Start) %F A071231 a(n) = (A001016(n) + A000583(n)) / 2 = (n^8 + n^4) / 2. %F A071231 G.f.: (Sum_{j=1..8} S2(8,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..4} S2(4,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277. %F A071231 G.f.: x*Sum_{k=0..7} A145882(8,k) * x^k / (1-x)^9. %F A071231 E.g.f.: (Sum_{k=1..8} S2(8,k)*x^k + Sum_{k=1..4} S2(4,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277. %F A071231 For n>8, a(n) = Sum_{j=1..9} -binomial(j-10,j) * a(n-j). (End) %F A071231 E.g.f.: x*(2 + 134*x + 972*x^2 + 1702*x^3 + 1050*x^4 + 266*x^5 + 28*x^6 + x^7)*exp(x)/2. - _G. C. Greubel_, Nov 15 2018 %t A071231 Table[(n^8+n^4)/2,{n,0,30}] (* or *) LinearRecurrence[{9,-36,84,-126,126, -84,36,-9,1},{0,1,136,3321,32896,195625,840456,2883601,8390656},30] (* _Harvey P. Dale_, Oct 11 2011 *) %o A071231 (Magma) [(n^8 + n^4)/2: n in [0..50]]; // _Vincenzo Librandi_, Jun 14 2011 %o A071231 (PARI) vector(50, n, n--; (n^8 + n^4)/2) \\ _G. C. Greubel_, Nov 15 2018 %o A071231 (Sage) [(n^4 + n^8)/2 for n in range(50)] # _G. C. Greubel_, Nov 15 2018 %o A071231 (GAP) List([0..50], n -> (n^4 + n^8)/2); # _G. C. Greubel_, Nov 15 2018 %Y A071231 Row 8 of A277504. %Y A071231 Cf. A001016 (oriented), A000583 (achiral). %Y A071231 Cf. A000583, A001016. %Y A071231 Cf. A008277, A145882. %Y A071231 Subsequence of A000217 (triangular numbers). %K A071231 nonn,easy %O A071231 0,3 %A A071231 _N. J. A. Sloane_, Jun 11 2002