This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A071233 #33 Aug 05 2024 08:43:57 %S A071233 0,10,40,102,208,370,600,910,1312,1818,2440,3190,4080,5122,6328,7710, %T A071233 9280,11050,13032,15238,17680,20370,23320,26542,30048,33850,37960, %U A071233 42390,47152,52258,57720,63550,69760,76362,83368,90790,98640,106930,115672,124878,134560 %N A071233 a(n) = 2*(n-1)*(n^2 + 1). %C A071233 For n > 1, a(n) is the sum of the numbers appearing along the outside border of an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows. - _Wesley Ivan Hurt_, May 13 2021 %D A071233 T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002. %H A071233 Vincenzo Librandi, <a href="/A071233/b071233.txt">Table of n, a(n) for n = 1..2000</a> %H A071233 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A071233 a(n) = 2*A062158(n). %F A071233 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). %F A071233 G.f.: 2*x*(5+x^2)/(1 - x)^4 - _Harvey P. Dale_, Jun 27 2021 %F A071233 E.g.f.: 2*exp(x)*x*(5 + 5*x + x^2). - _Stefano Spezia_, Apr 22 2023 %F A071233 a(n) = (n-1)*A005893(n). - _G. C. Greubel_, Aug 05 2024 %e A071233 From _Wesley Ivan Hurt_, May 13 2021: (Start) %e A071233 Given the 4 X 4 square array below, %e A071233 [ 1 2 3 4 ] %e A071233 [ 5 6 7 8 ] %e A071233 [ 9 10 11 12 ] %e A071233 [ 13 14 15 16 ] %e A071233 the sum of the elements along the outside border is 1+2+3+4+8+12+16+15+14+13+9+5 = 102. Thus a(4) = 102. (End) %t A071233 Table[2(n-1)(n^2+1),{n,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,10,40,102},50] (* _Harvey P. Dale_, Jun 27 2021 *) %o A071233 (Magma) [2*(n-1)*(n^2+1): n in [1..50]]; // _Vincenzo Librandi_, Jun 14 2011 %o A071233 (SageMath) %o A071233 def A071233(n): return 2*(n-1)*(n^2+1) %o A071233 [A071233(n) for n in range(1,51)] # _G. C. Greubel_, Aug 05 2024 %Y A071233 Cf. A005893, A062158. %K A071233 nonn,easy %O A071233 1,2 %A A071233 _N. J. A. Sloane_, Jun 11 2002