This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A071252 #38 Aug 07 2024 02:25:02 %S A071252 0,0,5,30,102,260,555,1050,1820,2952,4545,6710,9570,13260,17927,23730, %T A071252 30840,39440,49725,61902,76190,92820,112035,134090,159252,187800, %U A071252 220025,256230,296730,341852,391935,447330,508400,575520,649077,729470,817110,912420 %N A071252 a(n) = n*(n - 1)*(n^2 + 1)/2. %D A071252 T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002. %H A071252 Vincenzo Librandi, <a href="/A071252/b071252.txt">Table of n, a(n) for n = 0..2000</a> %H A071252 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A071252 a(n) = floor(n^5/(n+1))/2. - _Gary Detlefs_, Mar 31 2011 %F A071252 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) n>4, a(0)=0, a(1)=0, a(2)=5, a(3)=30, a(4)=102. - _Yosu Yurramendi_, Sep 03 2013 %F A071252 G.f.: x^2*(5+5*x+2*x^2)/(1-x)^5. - _Joerg Arndt_, Sep 04 2013 %F A071252 From _Indranil Ghosh_, Apr 05 2017: (Start) %F A071252 a(n) = A002378(n) * A002522(n) / 2. %F A071252 E.g.f.: exp(x)*x^2*(5 + 5*x + x^2)/2. %F A071252 (End) %t A071252 f[n_] := n (n - 1) (n^2 + 1)/2 (* Or *) f[n_] := Floor[n^5/(n + 1)]/2; Array[f, 38, 0] (* _Robert G. Wilson v_, Apr 01 2012 *) %o A071252 (Magma) [n*(n-1)*(n^2+1)/2: n in [0..40]]; // _Vincenzo Librandi_, Jun 14 2011 %o A071252 (PARI) a(n)=n*(n-1)*(n^2+1)/2; \\ _Joerg Arndt_, Sep 04 2013 %o A071252 (Python) def a(n): return n*(n - 1)*(n**2 + 1)/2 # _Indranil Ghosh_, Apr 05 2017 %o A071252 (SageMath) %o A071252 def A071252(n): return binomial(n,2)*(1+n^2) %o A071252 [A071252(n) for n in range(41)] # _G. C. Greubel_, Aug 07 2024 %Y A071252 Cf. A002378, A002522, A071239, A071244, A071245, A071246. %K A071252 nonn,easy %O A071252 0,3 %A A071252 _N. J. A. Sloane_, Jun 12 2002