cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071267 Numbers which can be expressed as the sum of all distinct digit permutations of some number k.

This page as a plain text file.
%I A071267 #16 Jan 28 2023 12:18:24
%S A071267 1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99,110,111,121,132,143,154,
%T A071267 165,176,187,222,333,444,555,666,777,888,999,1110,1111,1221,1332,1443,
%U A071267 1554,1665,1776,1887,1998,2109,2220,2222,2331,2442,2553,2664,2775,2886
%N A071267 Numbers which can be expressed as the sum of all distinct digit permutations of some number k.
%C A071267 222 can be expressed so in two different ways, i.e., 222 = 200 + 020 + 002 as well as 222 = 101 + 110 + 011. Problem: find a number which can be so expressed in n different ways.
%H A071267 David W. Wilson, <a href="/A071267/b071267.txt">Table of n, a(n) for n = 1..9450</a>
%F A071267 From _David W. Wilson_, Jul 12 2007: (Start)
%F A071267 Let f(n) be the sum of all permuted versions of n. Let
%F A071267   s(n) = sum of digits of n.
%F A071267   d(n) = number of digits of n.
%F A071267   c_n(k) = number of occurrences of digit k in n.
%F A071267   p(n) = Product_{k=0..9} c_n(k)!.
%F A071267   r(n) = n-digit rep-1 number = (10^n-1)/n.
%F A071267   t(n) = s(n)*(d(n)-1)!/p(n).
%F A071267 Then f(n) = t(n)*r(d(n)).
%F A071267 For example, if n = 314159, we get
%F A071267   s(n) = 23
%F A071267   d(n) = 6
%F A071267   c_n = (0, 2, 0, 1, 1, 1, 0, 0, 0, 1)
%F A071267   p(n) = Product_{k=0..9} c_n(k)! = 2
%F A071267   r(d(n)) = r(6) = 111111
%F A071267   t(n) = 23*120/2 = 1380
%F A071267 and
%F A071267   f(314159) = 1380*11111 = 153333180. (End)
%e A071267 1110 is a term as it is the sum of all distinct permutations of 104, i.e., 104+140+410+401+014+041 = 1110.
%K A071267 base,nonn
%O A071267 1,2
%A A071267 _Amarnath Murthy_, Jun 01 2002
%E A071267 Corrected and extended by _Diana L. Mecum_, Jul 06 2007