This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A071281 #8 Oct 30 2022 18:19:59 %S A071281 0,0,0,1,1,2,2,3,1,4,3,5,4,6,2,7,5,8,6,9,3,10,7,11,8,12,4,13,9,14,10, %T A071281 15,5,16,11,17,12,18,6,19,13,20,14,21,7,22,15,23,16,24,8,25,17,26,18, %U A071281 27,9,28,19,29,20,30,10,31,21,32,22,33,11,34,23,35,24,36,12,37,25,38 %N A071281 Numerators of Peirce sequence of order 3. %D A071281 R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998, p. 151. %F A071281 Conjectures from _Colin Barker_, Mar 29 2017: (Start) %F A071281 G.f.: x^3*(x^11 + x^10 + 2*x^9 + x^8 + 3*x^7 + 2*x^6 + 2*x^5 + x^4 + x^3)/(x^12 - 2*x^6 + 1). %F A071281 a(n) = 2*a(n-6) - a(n-12) for n>11. %F A071281 (End) %e A071281 The Peirce sequences of orders 1, 2, 3, 4, 5 begin: %e A071281 0/1 1/1 2/1 3/1 4/1 5/1 6/1 7/1 ... %e A071281 0/2 0/1 1/2 2/2 1/1 3/2 4/2 2/1 ... (numerators are A009947) %e A071281 0/2 0/3 0/1 1/3 1/2 2/3 2/2 3/3 ... %e A071281 0/2 0/4 0/3 0/1 1/4 1/3 2/4 1/2 ... %e A071281 0/2 0/4 0/5 0/3 0/1 1/5 1/4 1/3 ... %Y A071281 Cf. A071282-A071288. %K A071281 nonn,frac,easy %O A071281 0,6 %A A071281 _N. J. A. Sloane_, Jun 11 2002 %E A071281 More terms from _Reiner Martin_, Oct 15 2002