This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A071285 #7 Oct 30 2022 18:19:59 %S A071285 0,0,0,0,0,1,1,1,2,2,1,3,2,3,4,2,4,5,3,1,6,5,4,7,6,3,8,5,7,9,4,8,10,6, %T A071285 2,11,9,7,12,10,5,13,8,11,14,6,12,15,9,3,16,13,10,17,14,7,18,11,15,19, %U A071285 8,16,20,12,4,21,17,13,22,18,9,23,14,19,24,10,20,25,15,5 %N A071285 Numerators of Peirce sequence of order 5. %D A071285 R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998, p. 151. %F A071285 Conjectures from _Colin Barker_, Mar 29 2017: (Start) %F A071285 G.f.: x^5*(x^29 + x^28 + x^27 + 2*x^26 + x^25 + 2*x^24 + 3*x^23 + 2*x^22 + 3*x^21 + 4*x^20 + x^19 + 3*x^18 + 5*x^17 + 4*x^16 + 2*x^15 + 4*x^14 + 3*x^13 + 2*x^12 + 3*x^11 + x^10 + 2*x^9 + 2*x^8 + x^7 + x^6 + x^5)/(x^30 - 2*x^15 + 1). %F A071285 a(n) = 2*a(n-15) - a(n-30) for n>29. %F A071285 (End) %e A071285 The Peirce sequences of orders 1, 2, 3, 4, 5 begin: %e A071285 0/1 1/1 2/1 3/1 4/1 5/1 6/1 7/1 ... %e A071285 0/2 0/1 1/2 2/2 1/1 3/2 4/2 2/1 ... (numerators are A009947) %e A071285 0/2 0/3 0/1 1/3 1/2 2/3 2/2 3/3 ... %e A071285 0/2 0/4 0/3 0/1 1/4 1/3 2/4 1/2 ... %e A071285 0/2 0/4 0/5 0/3 0/1 1/5 1/4 1/3 ... %Y A071285 Cf. A071281-A071288. %K A071285 nonn,frac,easy %O A071285 0,9 %A A071285 _N. J. A. Sloane_, Jun 11 2002 %E A071285 Corrected and extended by _Reiner Martin_, Oct 15 2002