cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071295 Product of numbers of 0's and 1's in binary representation of n.

This page as a plain text file.
%I A071295 #23 Aug 25 2020 12:32:37
%S A071295 0,0,1,0,2,2,2,0,3,4,4,3,4,3,3,0,4,6,6,6,6,6,6,4,6,6,6,4,6,4,4,0,5,8,
%T A071295 8,9,8,9,9,8,8,9,9,8,9,8,8,5,8,9,9,8,9,8,8,5,9,8,8,5,8,5,5,0,6,10,10,
%U A071295 12,10,12,12,12,10,12,12,12,12,12,12,10,10,12,12,12,12,12,12,10,12,12,12
%N A071295 Product of numbers of 0's and 1's in binary representation of n.
%C A071295 a(n) = A023416(n)*A000120(n);
%C A071295 a(1)=0, a(2*n)=(A023416(n)+1)*A000120(n), a(2*n+1)=(A000120(n)+1)*A023416(n);
%C A071295 a(n) = 0 iff n=2^k-1 for some k.
%C A071295 a(A059011(n)) mod 2 = 1. - _Reinhard Zumkeller_, Aug 09 2014
%H A071295 T. D. Noe, <a href="/A071295/b071295.txt">Table of n, a(n) for n = 0..1023</a>
%H A071295 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F A071295 a(n) = a(floor(n/2)) + (1 - n mod 2) * A000120(floor(n/2)) + (n mod 2)*A023416(floor(n/2)).
%e A071295 a(14)=3 because 14 is 1110 in binary and has 3 ones and 1 zero.
%t A071295 f[n_] := Block[{s = IntegerDigits[n, 2]}, Count[s, 0] Count[s, 1]]; Table[ f[n], {n, 0, 90}]
%t A071295 Table[DigitCount[n,2,1]DigitCount[n,2,0],{n,0,100}] (* _Harvey P. Dale_, Sep 19 2019 *)
%o A071295 (Haskell)
%o A071295 a071295 n = a000120 n * a023416 n  -- _Reinhard Zumkeller_, Aug 09 2014
%o A071295 (Python)
%o A071295 def A071295(n):
%o A071295     return bin(n)[1:].count('0')*bin(n).count('1') # _Chai Wah Wu_, Dec 23 2019
%Y A071295 Cf. A007088.
%Y A071295 Cf. A000120, A023416, A059011.
%K A071295 nonn,nice,base
%O A071295 0,5
%A A071295 _Reinhard Zumkeller_, Jun 20 2002
%E A071295 Edited by _N. J. A. Sloane_ and _Robert G. Wilson v_, Oct 11 2002