This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A071303 #54 Jul 11 2024 22:23:57 %S A071303 1,8,192,12288,1966080,1509949440,5411658792960 %N A071303 1/2 times the number of n X n 0..3 matrices M with MM' mod 4 = I, where M' is the transpose of M and I is the n X n identity matrix. %C A071303 It seems that a(n) = n! * 2^(binomial(n+1,2) - 1) for n = 1, 2, 3, 4, 5, while for n = 6, a(n) is twice this number. The number n! * 2^(binomial(n+1,2) - 1) appears in Proposition 6.1 in Eriksson and Linusson (2000) as an upper bound to the number of three-dimensional permutation arrays of size n (see column k = 3 of A330490). - _Petros Hadjicostas_, Dec 16 2019 %C A071303 a(7) = 7! * 2^30. - _Sean A. Irvine_, Jul 11 2024 %H A071303 Kimmo Eriksson and Svante Linusson, <a href="https://doi.org/10.1006/aama.1999.0693">A combinatorial theory of higher-dimensional permutation arrays</a>, Adv. Appl. Math. 25(2) (2000a), 194-211; see Proposition 6.1 (p. 210). %H A071303 Sean A. Irvinne, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a071/A071303.java">Java program</a> (github) %H A071303 Jianing Song, <a href="/A060968/a060968.txt">Structure of the group SO(2,Z_n)</a>. %H A071303 László Tóth, <a href="http://arxiv.org/abs/1404.4214">Counting solutions of quadratic congruences in several variables revisited</a>, arXiv:1404.4214 [math.NT], 2014. %H A071303 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Toth/toth12.html">Counting Solutions of Quadratic Congruences in Several Variables Revisited</a>, J. Int. Seq. 17 (2014), #14.11.6. %e A071303 From _Petros Hadjicostas_, Dec 16 2019: (Start) %e A071303 For n = 2, here are the 2*a(2) = 16 2 x 2 matrices M with elements in {0,1,2,3} that satisfy MM' mod 4 = I: %e A071303 (a) With 1 = det(M) mod 4: %e A071303 [[1,0],[0,1]]; [[0,1],[3,0]]; [[0,3],[1,0]]; [[1,2],[2,1]]; %e A071303 [[2,1],[3,2]]; [[2,3],[1,2]]; [[3,0],[0,3]]; [[3,2],[2,3]]. %e A071303 These form the abelian group SO(2, Z_n). See the comments for sequence A060968. %e A071303 (b) With 3 = det(M) mod 4: %e A071303 [[0,1],[1,0]]; [[0,3],[3,0]]; [[1,0],[0,3]]; [[1,2],[2,3]]; %e A071303 [[2,1],[1,2]]; [[2,3],[3,2]]; [[3,0],[0,1]]; [[3,2],[2,1]]. %e A071303 Note that, for n = 3, we have 2*a(3) = 2*192 = 384 = A264083(4). (End) %Y A071303 Cf. A003920, A060968, A071302, A071304, A071305, A071306, A071307, A071308, A071309, A071310, A071900, A087784, A208895, A229136, A264083, A330490. %K A071303 nonn,more %O A071303 1,2 %A A071303 _R. H. Hardin_, Jun 11 2002 %E A071303 a(7) from _Sean A. Irvine_, Jul 11 2024