This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A071316 #19 Jul 11 2024 23:59:18 %S A071316 2,4,5,16,10,10,17,13,20,74,113,32,25,76,55,31,44,86,74,46,42,100,402, %T A071316 115,63,71,104,143,489,346,96,78,68,87,167,196,116,95,76,123,109,108, %U A071316 141,176,141,133,260,1038,4748,5731,1162,285,189,248,478,399,163,154 %N A071316 Sum of terms of continued fraction expansion of frac((3/2)^n). %C A071316 What is the rate of growth of this sequence? %D A071316 S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 192-199. %H A071316 Alois P. Heinz, <a href="/A071316/b071316.txt">Table of n, a(n) for n = 1..1000</a> %H A071316 Steven R. Finch, <a href="/FinchPwrs32.html">Powers of 3/2 Modulo One</a> [From Steven Finch, Apr 20 2019] %H A071316 Steven R. Finch, <a href="/FinchWaring.html">Non-Ideal Waring's Problem</a> [From Steven Finch, Apr 20 2019] %H A071316 Jeff Lagarias, <a href="http://www.cecm.sfu.ca/organics/papers/lagarias/">3x+1 Problem</a> %e A071316 a(3) = 5 since frac((3/2)^3) = [0;2,1,2] and a(3) = 2 + 1 + 2. %o A071316 (PARI) a(n) = {cf = contfrac((3/2)^n); return (sum(i=2, #cf, cf[i]));} \\ _Michel Marcus_, Aug 01 2013 %Y A071316 Cf. A002379, A071315. %K A071316 nonn %O A071316 1,1 %A A071316 _Paul D. Hanna_, Jun 11 2002 %E A071316 Name corrected by _Sean A. Irvine_, Jul 11 2024