cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A071349 Numbers k for which the GCD of the k-th primorial number and its totient (A058250) sets record.

Original entry on oeis.org

1, 2, 4, 5, 9, 10, 15, 16, 17, 23, 27, 28, 35, 39, 40, 41, 43, 49, 56, 57, 61, 62, 64, 66, 69, 72, 73, 76, 77, 91, 92, 96, 97, 102, 103, 104, 107, 111, 114, 117, 119, 127, 128, 137, 139, 143, 146, 150, 154, 155, 166, 171, 181, 182, 186, 195, 196, 201, 208, 214, 215
Offset: 1

Views

Author

Labos Elemer, May 21 2002

Keywords

Crossrefs

Programs

  • Mathematica
    q[n_] := Product[Prime[i], {i, 1, n}]; fq[n_] := Product[Prime[i] - 1, {i, 1, n}];
    a=0; Do[s=GCD[q[n], fq[n]]; If[s>a, a=s; Print[n]], {n, 1, 1000}]

Formula

If A058250(m) > A058250(k) for all k < m then m is a term.

A307805 a(n) = first position of prime(n) in A023503.

Original entry on oeis.org

2, 4, 5, 10, 9, 16, 27, 43, 15, 17, 64, 35, 23, 40, 61, 28, 127, 73, 57, 104, 62, 66, 39, 41, 77, 111, 114, 117, 182, 49, 97, 56, 143, 102, 196, 155, 248, 119, 346, 69, 72, 181, 76, 137, 497, 139, 318, 388, 721, 401, 91, 92, 229, 96, 243, 249, 325, 258, 186, 103
Offset: 1

Views

Author

Michael De Vlieger, Apr 29 2019

Keywords

Comments

Apparent permutation of A071349(n) apart from A071349(1) = 1.
Let i = a(n). Sorting prime(n) in order of increasing i yields A112037 = {2, 3, 5, 11, 7, 23, 13, 29, 41, ...}. The product of the first j terms of A112037 = A071350(j).

Examples

			a(1) = 2 since prime(1) = gpf(prime(2) - 1), i.e., 2 = gpf(2).
a(2) = 4 since prime(2) = gpf(prime(4) - 1), i.e., 3 = gpf(6).
a(3) = 5 since prime(3) = gpf(prime(5) - 1), i.e., 5 = gpf(10).
a(4) = 10 since prime(4) = gpf(prime(10) - 1), i.e., 7 = gpf(28).
		

Crossrefs

Programs

  • Mathematica
    With[{s = Array[FactorInteger[Prime@ # - 1][[-1, 1]] &, 1000]}, Reap[Do[If[FreeQ[s, #], Break[], Sow@ FirstPosition[s, #][[1]]] &@ Prime@ i, {i, Length@ s}]][[-1, -1]]]
  • PARI
    { a = vector(60); pr = primes(#a); u = 1; n = 1;
    forprime (p=3, oo, n++; f=factor(p-1); g=setsearch(pr, f[#f~,1]);
    if (g && !a[g], a[g]=n; while (a[u], print1 (a[u]", "); u++; if (u>#a, break (2))))) } \\ Rémy Sigrist, May 28 2019
Showing 1-2 of 2 results.