cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071395 Primitive abundant numbers (abundant numbers all of whose proper divisors are deficient numbers).

This page as a plain text file.
%I A071395 #31 Feb 16 2025 08:32:46
%S A071395 20,70,88,104,272,304,368,464,550,572,650,748,836,945,1184,1312,1376,
%T A071395 1430,1504,1575,1696,1870,1888,1952,2002,2090,2205,2210,2470,2530,
%U A071395 2584,2990,3128,3190,3230,3410,3465,3496,3770,3944,4030,4070,4095,4216,4288
%N A071395 Primitive abundant numbers (abundant numbers all of whose proper divisors are deficient numbers).
%C A071395 This is a subsequence of the primitive abundant number sequence A091191, since none of these numbers are a positive integer multiple of a perfect number (A000396). - _Timothy L. Tiffin_, Jul 15 2016
%C A071395 If the terms of this sequence are removed from A091191, then the resulting sequence will be A275082. - _Timothy L. Tiffin_, Jul 16 2016
%C A071395 Numbers n such that A294927(n) = 0 and A294937(n) = 1. - _Antti Karttunen_, Nov 14 2017
%D A071395 Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 46, also section B2, 1994.
%H A071395 Donovan Johnson, <a href="/A071395/b071395.txt">Table of n, a(n) for n = 1..10000</a>
%H A071395 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimitiveAbundantNumber.html">Primitive Abundant Number</a>
%e A071395 20 is a term since 1, 2, 4, 5, and 10 (the proper divisors of 20) are all deficient numbers. - _Timothy L. Tiffin_, Jul 15 2016
%p A071395 abundance:= proc(n) option remember;  numtheory:-sigma(n)-2*n end proc:
%p A071395 select(n -> abundance(n) > 0 and andmap(t -> abundance(t) < 0, numtheory:-divisors(n) minus {n}), [$1..10000]); # _Robert Israel_, Nov 15 2017
%t A071395 Select[Range@ 5000, DivisorSigma[1, #] > 2 # && Times @@ Boole@ Map[DivisorSigma[1, #] < 2 # &, Most@ Divisors@ #] == 1 &] (* _Michael De Vlieger_, Jul 16 2016 *)
%o A071395 (PARI) isA071395(v) = {if (sigma(v) <= 2*v, return (0)); fordiv (v, d, if ((d != v) && (sigma(d) >= 2*d), return (0));); return (1);} \\ _Michel Marcus_, Mar 10 2013
%Y A071395 Cf. A006038, A000396, A005100, A005101, subsequence of A091191, A275082.
%Y A071395 Cf. A294927, A294937.
%K A071395 nonn
%O A071395 1,1
%A A071395 Joe McCauley (mccauley(AT)davesworld.net), Jun 12 2002
%E A071395 Offset corrected by _Donovan Johnson_, Aug 28 2011