cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071406 a(n) is the smallest multiplier of n! such that -1+a(n)*n! and 1+a(n)*n! are both primes.

This page as a plain text file.
%I A071406 #10 May 24 2016 18:04:07
%S A071406 4,2,1,3,2,17,7,6,3,14,29,30,48,27,9,24,12,97,78,47,71,80,55,13,57,20,
%T A071406 81,259,108,163,81,118,63,215,173,513,420,561,537,1162,158,33,122,286,
%U A071406 459,391,305,288,114,307,15,680,355,365,338,70,23
%N A071406 a(n) is the smallest multiplier of n! such that -1+a(n)*n! and 1+a(n)*n! are both primes.
%H A071406 Pierre CAMI, <a href="/A071406/b071406.txt">Table of n, a(n) for n = 1..300</a>
%e A071406 n=7: a(7)=7, 7!=5040, 7.7!=35280 and {35279,35281} are primes.
%t A071406 Table[fl=1; Do[s=(j!)*k; If[PrimeQ[s-1]&&PrimeQ[s+1]&&Equal[fl, 1], Print[{j, k}]; fl=0], {k, 1, 2*j^2}], {j, 0, 100}]
%t A071406 smnf[n_]:=Module[{k=1,f=n!},While[!PrimeQ[k*f+1]||!PrimeQ[k*f-1],k++]; k]; Array[smnf,60] (* _Harvey P. Dale_, May 24 2016 *)
%Y A071406 Cf. A063983, A071256, A060256.
%K A071406 nonn
%O A071406 1,1
%A A071406 _Labos Elemer_, May 24 2002