This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A071620 #55 Feb 16 2025 08:32:46 %S A071620 10,14,24,235,2804,4347,37735 %N A071620 Integer lengths of the Champernowne primes (concatenation of first a(n) entries (digits) of A033307 is prime). %C A071620 Next term has n > 113821. - _Eric W. Weisstein_, Nov 04 2015 %C A071620 Also: concatenation of A007376(1 .. a(n)) is prime. - _M. F. Hasler_, Oct 23 2019 %H A071620 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ChampernowneConstantDigits.html">Champernowne Constant Digits</a> %H A071620 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ConsecutiveNumberSequences.html">Consecutive Number Sequences</a> %H A071620 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ConstantPrimes.html">Constant Primes</a> %H A071620 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IntegerSequencePrimes.html">Integer Sequence Primes</a> %H A071620 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SmarandachePrime.html">Smarandache Prime</a> %t A071620 f[0] = 0; f[n_Integer] := 10^(Floor[Log[10, n]] + 1)*f[n - 1] + n; Do[If[PrimeQ[FromDigits[Take[IntegerDigits[f[n]], n]]], Print[n]], {n, 1, 3000}] %t A071620 Cases[FromDigits /@ Rest[FoldList[Append, {}, RealDigits[N[ChampernowneNumber[], 1000]][[1]]]], p_?PrimeQ :> IntegerLength[p]] (* _Eric W. Weisstein_, Nov 04 2015 *) %o A071620 (Python) %o A071620 from itertools import count, islice %o A071620 from sympy import isprime %o A071620 def A071620_gen(): # generator of terms %o A071620 c, l = 0, 0 %o A071620 for n in count(1): %o A071620 for d in str(n): %o A071620 c = 10*c+int(d) %o A071620 l += 1 %o A071620 if isprime(c): %o A071620 yield l %o A071620 A071620_list = list(islice(A071620_gen(),5)) # _Chai Wah Wu_, Feb 27 2023 %Y A071620 Cf. A007376 (infinite Barbier word = almost-natural numbers: write n in base 10 and juxtapose digits). %Y A071620 Cf. A033307 (decimal expansion of Champernowne constant), A176942 (the corresponding primes of length a(n)), A265043. %Y A071620 Cf. A072125. %K A071620 nonn,base,hard,more %O A071620 1,1 %A A071620 _Robert G. Wilson v_, Jun 21 2002 %E A071620 Edited by _Charles R Greathouse IV_, Apr 28 2010 %E A071620 a(6) = 4347 from _Eric W. Weisstein_, Jul 14 2013 %E A071620 a(7) = 37735 from _Eric W. Weisstein_, Jul 15 2013