cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071620 Integer lengths of the Champernowne primes (concatenation of first a(n) entries (digits) of A033307 is prime).

This page as a plain text file.
%I A071620 #55 Feb 16 2025 08:32:46
%S A071620 10,14,24,235,2804,4347,37735
%N A071620 Integer lengths of the Champernowne primes (concatenation of first a(n) entries (digits) of A033307 is prime).
%C A071620 Next term has n > 113821. - _Eric W. Weisstein_, Nov 04 2015
%C A071620 Also: concatenation of A007376(1 .. a(n)) is prime. - _M. F. Hasler_, Oct 23 2019
%H A071620 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ChampernowneConstantDigits.html">Champernowne Constant Digits</a>
%H A071620 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ConsecutiveNumberSequences.html">Consecutive Number Sequences</a>
%H A071620 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ConstantPrimes.html">Constant Primes</a>
%H A071620 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IntegerSequencePrimes.html">Integer Sequence Primes</a>
%H A071620 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SmarandachePrime.html">Smarandache Prime</a>
%t A071620 f[0] = 0; f[n_Integer] := 10^(Floor[Log[10, n]] + 1)*f[n - 1] + n; Do[If[PrimeQ[FromDigits[Take[IntegerDigits[f[n]], n]]], Print[n]], {n, 1, 3000}]
%t A071620 Cases[FromDigits /@ Rest[FoldList[Append, {}, RealDigits[N[ChampernowneNumber[], 1000]][[1]]]],  p_?PrimeQ :> IntegerLength[p]] (* _Eric W. Weisstein_, Nov 04 2015 *)
%o A071620 (Python)
%o A071620 from itertools import count, islice
%o A071620 from sympy import isprime
%o A071620 def A071620_gen(): # generator of terms
%o A071620     c, l = 0, 0
%o A071620     for n in count(1):
%o A071620         for d in str(n):
%o A071620             c = 10*c+int(d)
%o A071620             l += 1
%o A071620             if isprime(c):
%o A071620                 yield l
%o A071620 A071620_list = list(islice(A071620_gen(),5)) # _Chai Wah Wu_, Feb 27 2023
%Y A071620 Cf. A007376 (infinite Barbier word = almost-natural numbers: write n in base 10 and juxtapose digits).
%Y A071620 Cf. A033307 (decimal expansion of Champernowne constant), A176942 (the corresponding primes of length a(n)), A265043.
%Y A071620 Cf. A072125.
%K A071620 nonn,base,hard,more
%O A071620 1,1
%A A071620 _Robert G. Wilson v_, Jun 21 2002
%E A071620 Edited by _Charles R Greathouse IV_, Apr 28 2010
%E A071620 a(6) = 4347 from _Eric W. Weisstein_, Jul 14 2013
%E A071620 a(7) = 37735 from _Eric W. Weisstein_, Jul 15 2013