cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071626 Number of distinct exponents in the prime factorization of n!.

This page as a plain text file.
%I A071626 #47 Apr 10 2024 11:11:39
%S A071626 0,1,1,2,2,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,
%T A071626 7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,8,9,9,10,
%U A071626 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11
%N A071626 Number of distinct exponents in the prime factorization of n!.
%C A071626 Erdős proved that there exist two constants c1, c2 > 0 such that c1 (n / log(n))^(1/2) < a(n) < c2 (n / log(n))^(1/2). - _Carlo Sanna_, May 28 2019
%C A071626 R. Heyman and R. Miraj proved that the cardinality of the set { floor(n/p) : p <= n, p prime } is same as the number of distinct exponents in the prime factorization of n!. - _Md Rahil Miraj_, Apr 05 2024
%H A071626 David A. Corneth, <a href="/A071626/b071626.txt">Table of n, a(n) for n = 1..10000</a>
%H A071626 P. Erdős, <a href="https://users.renyi.hu/~p_erdos/1982-08.pdf">Miscellaneous problems in number theory</a>, Proceedings of the Eleventh Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, Man., 1981), Congressus Numerantium 34 (1982), 25-45.
%H A071626 Randell Heyman and Md Rahil Miraj, <a href="https://arxiv.org/abs/2309.16072">On some floor function sets</a>, arXiv:2309.16072 [math.NT], 2023-2024.
%F A071626 a(n) = A071625(n!) = A323023(n!,3). - _Gus Wiseman_, May 15 2019
%e A071626 n=7: 7! = 5040 = 2*2*2*2*3*3*5*7; three different exponents arise: 4, 2 and 1; a(7)=3.
%e A071626 n=7: { floor(7/p) : p <= 7, p prime } = {3,2,1}. So, its cardinality is 3. - _Md Rahil Miraj_, Apr 05 2024
%t A071626 ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ep[x_] := Table[Part[ffi[x], 2*w], {w, 1, lf[x]}] Table[Length[Union[ep[w! ]]], {w, 1, 100}]
%t A071626 Table[Length[Union[Last/@If[n==1,{},FactorInteger[n!]]]],{n,30}] (* _Gus Wiseman_, May 15 2019 *)
%o A071626 (PARI) a(n) = #Set(factor(n!)[, 2]); \\ _Michel Marcus_, Sep 05 2017
%Y A071626 Cf. A051903, A051904, A071625, A240751.
%Y A071626 Cf. A000142, A001221, A001222, A011371, A022559, A076934, A115627, A135291.
%Y A071626 Cf. A325272, A325273, A325276, A325508.
%K A071626 nonn,easy
%O A071626 1,4
%A A071626 _Labos Elemer_, May 29 2002