A071628 Smallest m such that (2n-1)*2^m is totient, that is, in A002202, or -1 if (2n-1)*2^m is never a totient.
1, 1, 1, 2, 1, 1, 2, 1, 3, 6, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 2, 2, 583, 2, 1, 1, 1, 2, 5, 4, 1, 1, 2, 1, 3, 2, 1, 3, 2, 1, 1, 4, 2, 1, 4, 2, 1, 2, 1, 3, 16, 1, 3, 6, 1, 1, 2, 2, 1, 4, 2, 1, 2, 3, 1, 4, 1, 3, 2, 1, 3, 2, 1, 3, 4, 1, 1, 8, 2, 3, 2, 1, 7, 2, 1, 1, 2, 2, 1, 4, 1, 3, 4, 1, 1, 2, 2, 15, 2, 3, 2
Offset: 1
Keywords
Examples
n=52:2n-1=13, [seq(nops(invphi(103*2^i)),i=1..25)]; gives: [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,6,8,10,12,14,16,18,20]; nonzero appears first at position 16, so a(52)=16,since 6750208=103.2^16 is totient, while 3375104 is nontotient. n=24, 2n-1=47: the first nonempty InvPhi(47.2^i) set arises at i=a[24]=583, a very large number.
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- D. Bressoud, CNT.m Computational Number Theory Mathematica package.
Crossrefs
Programs
-
Maple
with(numtheory); [seq(nops(invphi(odd*2^i)),i=1..N)]; Position of first nonzero provides a[n] belonging to 2n-1 odd number.
-
Mathematica
Needs["CNT`"]; Table[m=1; While[PhiInverse[n*2^m] == {}, m++], {n,1,200,2}]
Formula
a(n)=Min[{x; Card(InvPhi[(2n-1)*(2^x)])>0}]
Extensions
Escape clause added by Jianing Song, Dec 14 2021
Comments