A071687 Non-palindromic numbers such that either x=q1.Rev[x] or Rev[x]=q2.x, where R[x]=A004086[x] and q1 or q2 are integers not divisible by 10.
510, 540, 810, 1089, 2100, 2178, 4200, 5200, 5610, 5700, 5940, 6300, 8400, 8712, 8910, 9801, 10989, 21978, 23100, 27000, 46200, 51510, 52200, 52800, 54540, 56610, 57200, 59940, 65340, 69300, 81810, 87912, 89910, 98901, 109989, 212100, 217800
Offset: 1
Examples
Includes special cases of A071685. Examples represented by {n, Rev[n], integer-quotient} triples: {1089, 9801, 9}, {87912, 21979, 4}, {5610, 165, 34}, {610000, 16, 38125}, etc.
Programs
-
Mathematica
nd[x_, y_] := 10*x+y tn[x_] := Fold[nd, 0, x] ed[x_] := IntegerDigits[x] red[x_] := Reverse[ed[x]] Do[s=Mod[ma=Max[{n, tn[red[n]]}], mi=Min[{n, r=tn[red[n]]}]]; If[Equal[s, 0]&&!Equal[n, r] &&!Equal[Mod[ma/mi, 10], 0], Print[{n, r, Max[r/n, n/r]}]], {n, 1, 1000000}]
Formula
q=Max[n/Rev[n], Rev[n]/n]=10m+r integer, where r>0, q>1.