This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A071704 #20 Mar 09 2019 07:22:55 %S A071704 0,0,0,2,5,7,10,14,16,24,29,31,42,40,43,52,62,70,75,87,82,96,102,112, %T A071704 127,137,136,142,154,154,186,199,204,215,233,248,250,262,272,284,309, %U A071704 324,344,334,348,358,406,414,430,446,441,489,486,511,508 %N A071704 Number of ways to represent the n-th prime as arithmetic mean of three other odd primes. %H A071704 Robert Israel, <a href="/A071704/b071704.txt">Table of n, a(n) for n = 1..2000</a> %e A071704 a(5)=5 as A000040(5)=11 and there are no more representations not containing 11 than 11 = (3+7+23)/3 = (3+13+17)/3 = (5+5+23)/3 = (7+7+19)/3 = (7+13+13)/3. %p A071704 N:= 300: # to get the first A000720(N) terms %p A071704 P:= select(isprime, [seq(i,i=3..3*N,2)]): %p A071704 nP:= nops(P): %p A071704 V:= Vector(N): %p A071704 for i from 1 to nP do %p A071704 for j from i to nP do %p A071704 for k from j to nP while P[i]+P[j]+P[k] <= 3*N do %p A071704 r:= (P[i]+P[j]+P[k])/3; %p A071704 if r::integer and isprime(r) and r <> P[j] and r <= N then V[r]:= V[r]+1 fi %p A071704 od od od: %p A071704 seq(V[ithprime(i)],i=1..numtheory:-pi(N)); # _Robert Israel_, Aug 09 2018 %t A071704 M = 300; (* to get the first A000720(M) *) %t A071704 P = Select[Range[3, 3*M, 2], PrimeQ]; nP = Length[P]; V = Table[0, {M}]; %t A071704 For[i = 1, i <= nP, i++, %t A071704 For[j = i, j <= nP, j++, %t A071704 For[k = j, k <= nP && P[[i]] + P[[j]] + P[[k]] <= 3*M , k++, r = (P[[i]] + P[[j]] + P[[k]])/3; If[IntegerQ[r] && PrimeQ[r] && r != P[[j]] && r <= M, V[[r]] = V[[r]]+1] %t A071704 ]]]; %t A071704 Table[V[[Prime[i]]], {i, 1, PrimePi[M]}] (* _Jean-François Alcover_, Mar 09 2019, after _Robert Israel_ *) %o A071704 (Haskell) %o A071704 a071704 n = z (us ++ vs) 0 (3 * q) where %o A071704 z _ 3 m = fromEnum (m == 0) %o A071704 z ps'@(p:ps) i m = if m < p then 0 else z ps' (i+1) (m - p) + z ps i m %o A071704 (us, _:vs) = span (< q) a065091_list; q = a000040 n %o A071704 -- _Reinhard Zumkeller_, May 24 2015 %o A071704 (PARI) a(n, p=prime(n))=my(s=0); forprime(q=p+2, 3*p-4, my(t=3*p-q); forprime(r=max(t-q, 3), (3*p-q)\2, if(t!=p+r && isprime(t-r), s++))); s \\ _Charles R Greathouse IV_, Jun 04 2015 %Y A071704 Cf. A071681, A071703, A000040, A065091, A258233. %K A071704 nonn %O A071704 1,4 %A A071704 _Reinhard Zumkeller_, Jun 03 2002 %E A071704 Definition corrected by _Zak Seidov_, May 24 2015