cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071719 Expansion of (1+x^2*C)*C^4, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.

Original entry on oeis.org

1, 4, 15, 53, 185, 647, 2277, 8073, 28834, 103700, 375326, 1366290, 4999717, 18382405, 67877025, 251615745, 936047790, 3493585920, 13077995730, 49091198550, 184742369370, 696863109774, 2634345976818, 9978753842378
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2002

Keywords

Programs

  • Maple
    f:= gfun:-rectoproc({-3*(n+4)*(3*n-1)*a(n) +5*(n+2)*(7*n+3)*a(n-1) +2*(2*n-3)*(n-7)*a(n-2)=0,a(0)=1,a(1)=4},a(n),remember):
    map(f, [$0..40]); # Robert Israel, Jun 07 2018
  • Mathematica
    (1 + c x^2) c^4 /. c -> (1 - (1 - 4x)^(1/2))/(2x) + O[x]^24 // CoefficientList[#, x]& (* Jean-François Alcover, Oct 23 2019 *)

Formula

Conjecture: -3*(n+4)*(3*n-1)*a(n) +5*(n+2)*(7*n+3)*a(n-1) +2*(2*n-3)*(n-7)*a(n-2)=0. - R. J. Mathar, Aug 25 2013
Conjecture confirmed using the differential equation (4*x^4+35*x^3-9*x^2)*g'' + (-14*x^3+190*x^2-42*x)*g' + (-10*x^2+150*x+12)*g = 30*x+12 satisfied by the G.f. - Robert Israel, Jun 07 2018
a(n) ~ 37 * 4^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Oct 23 2019