A115127 Second (k=2) triangle of numbers related to totally asymmetric exclusion process (case alpha=1, beta=1).
3, 6, 7, 10, 16, 19, 15, 30, 47, 56, 21, 50, 95, 146, 174, 28, 77, 170, 311, 471, 561, 36, 112, 280, 586, 1043, 1562, 1859, 45, 156, 434, 1015, 2044, 3564, 5291, 6292, 55, 210, 642, 1652, 3682, 7204, 12363, 18226, 21658, 66, 275, 915, 2562, 6230, 13392, 25623
Offset: 2
Examples
[3];[6,7];[10,16,19];[15,30,47,56];... Main diagonal (n-m=1) example: a(3,2)= 7 = 5 + 2 because A115126(3,2)=5 and A115126(2,2)=2. Subdiagonal (n-m>1) example: a(4,2)= 16 = 9 + 7 because A115126(4,2)=9 and a(3,2)=7.
Links
- W. Lang: First 10 rows.
Crossrefs
Row sums give A115128.
Formula
A115134 Third diagonal sequence of triangle A115127.
10, 30, 95, 311, 1043, 3564, 12363, 43420, 154088, 551684, 1990326, 7228417, 26405725, 96961560, 357688755, 1324982160, 4926502020, 18379785300, 68783559810, 258141170430, 971310800694, 3663524817768, 13848466284350
Offset: 4
Formula
G.f. -(1+x^2+4*x^3) + (1-x+x^3)*c(x) with the g.f. c(x):=(1-sqrt(1-4*x))/(2*x) of A000108 (Catalan).
Comments