A071802 Table in which n-th row gives exponents (in decreasing order) of lexicographically earliest primitive irreducible polynomial of degree n over GF(2).
1, 0, 2, 1, 0, 3, 1, 0, 4, 1, 0, 5, 2, 0, 6, 1, 0, 7, 1, 0, 8, 4, 3, 1, 0, 9, 1, 0, 10, 3, 0, 11, 2, 0, 12, 3, 0, 13, 4, 3, 1, 0, 14, 5, 0, 15, 1, 0, 16, 5, 3, 1, 0, 17, 3, 0, 18, 3, 0, 19, 5, 2, 1, 0, 20, 3, 0, 21, 2, 0, 22, 1, 0, 23, 5, 0, 24, 4, 3, 1, 0, 25, 3, 0, 26, 4, 3, 1, 0, 27, 5, 2, 1, 0
Offset: 1
Examples
x+1, x^2+x+1, x^3+x+1, x^4+x+1, x^5+x^2+1, ...
References
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1978, p. 408.
- M. Olofsson, VLSI Aspects on Inversion in Finite Fields, Dissertation No. 731, Dept Elect. Engin., Linkoping, Sweden, 2002.
Crossrefs
Cf. A058943.
Programs
-
Mathematica
a = {}; Do[k = 2^n + 1; While[s = Apply[Plus, IntegerDigits[k, 2]*x^Table[i, {i, n, 0, -1}]]; k < 2^(n + 1) - 1 && Factor[s, Modulus -> 2] =!= s, k += 2]; a = Append[a, Reverse[ Exponent[ Apply[ Plus, IntegerDigits[k, 2]*x^Table[i, {i, n, 0, -1}]], x, List]]], {n, 1, 27}]; Flatten[a]
Extensions
Extended by Robert G. Wilson v, Jun 25 2002