This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A071843 #14 Jun 25 2024 01:31:49 %S A071843 119,17,107,59,29,62,126,19,127,63,15249,2193,13713,7569,3729,7953, %T A071843 16145,2449,16273,8081,15339,2283,13803,7659,3819,8043,16235,2539, %U A071843 16363,8171,15291,2235,13755,7611,3771,7995,16187,2491,16315,8123,15261,2205 %N A071843 Gives an LCD representation of n. %C A071843 This is based on the following way of writing "8": %C A071843 |--2--| %C A071843 4.....1 %C A071843 |--8--| %C A071843 64...16 %C A071843 |-32--| %C A071843 The powers of 2 present in the LCD representation are added. For example: n=1 gives 1 + 16 = 17. According to the position of a digit in n, [1,2,4...] is replaced by [128,256...],[16384,32768...], etc. %o A071843 (Scilab) function lcd: nb: final result ndc: number of digits u: interesting digit M(i,j): (j-1)th bit of (i-1) function [nb]=lcd(n); nb=0; M=[1 1 1 0 1 1 1; 1 0 0 0 1 0 0; 1 1 0 1 0 1 1; 1 1 0 1 1 1 0; 1 0 1 1 1 0 0; 0 1 1 1 1 1 0; 0 1 1 1 1 1 1; 1 1 0 0 1 0 0; 1 1 1 1 1 1 1; 1 1 1 1 1 1 0]; if n <> 0 then ndc=int(log10(n))+1,else ndc = 1,end; for cx = ndc:-1:1; u=int(n/(10^(cx-1))); n=n-u*(10^(cx-1)); for j=0:6; nb=nb+M(u+1,j+1)*2^(j+7*(ndc-cx)),end,end; endfunction %Y A071843 Cf. A006942 (bitcount). %Y A071843 Coding and glyph variations: A234691, A234692. %K A071843 nonn,base,easy %O A071843 0,1 %A A071843 Anonymous, Jun 08 2002 %E A071843 More terms from Antonio G. Astudillo, Apr 21 2003