This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A071848 #28 Aug 17 2024 22:26:37 %S A071848 2,3,5,10,13,22,38,85,138,246,547,1121,2792,6379,15021,20870,48309, %T A071848 161629 %N A071848 a(n) = smallest positive integer that cannot be obtained using the number n at most n times and the operations +, -, *, /, where intermediate subexpressions must be integers. %C A071848 Joe Crump's page indicates that a(9) = 195 if noninteger subexpressions are permitted. - _David W. Wilson_, Jan 14 2007 %H A071848 Gilles Bannay, <a href="https://web.archive.org/web/20061201125224/http://gilles.bannay.free.fr/jeux_us.html">Countdown Problem</a> %H A071848 Joe Crump, <a href="http://web.archive.org/web/20070630090158/http://www.immortaltheory.com/NumberTheory/nines.htm">The Nine 9s</a> %H A071848 <a href="/index/Fo#4x4">Index entries for similar sequences</a> %e A071848 a(3) = 5 because using 3 at most thrice we can have 3/3=1, 3-(3/3)=2, 3=3, 3+(3/3)=4 but we cannot obtain 5 this way. %e A071848 a(14) != 3967 since 3967 = 3969 - 2 = 21 * 189 - 2 = (7 + 14) * (14*14 - 7) - 2 = (14/((14+14)/14) + 14) * (14*14 - 14/((14+14)/14)) - (14+14)/14. %o A071848 (Python) %o A071848 from functools import lru_cache %o A071848 def a(n): %o A071848 @lru_cache() %o A071848 def f(m): %o A071848 if m == 1: return {n} %o A071848 out = set() %o A071848 for j in range(1, m//2+1): %o A071848 for x in f(j): %o A071848 for y in f(m-j): %o A071848 out.update([x + y, x - y, y - x, x * y]) %o A071848 if y and x%y == 0: out.add(x//y) %o A071848 if x and y%x == 0: out.add(y//x) %o A071848 return out %o A071848 k, s = 1, set.union(*(f(i) for i in range(1, n+1))) %o A071848 while k in s: k += 1 %o A071848 return k %o A071848 print([a(n) for n in range(1, 14)]) # _Michael S. Branicky_, Jul 28 2022 %Y A071848 Cf. A060315. %K A071848 hard,more,nonn %O A071848 1,1 %A A071848 Koksal Karakus (karakusk(AT)hotmail.com), Jun 09 2002 %E A071848 Definition corrected by _David W. Wilson_, Jan 14 2007 %E A071848 Definition changed (to reflect wording of the example) by Jason Taff (jtaff(AT)jburroughs.org), Apr 07 2010 %E A071848 a(14)-a(15) corrected and a(16) from _Michael S. Branicky_, Jul 28 2022 %E A071848 a(17)-a(18) from _Sean A. Irvine_, Aug 17 2024