cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071882 Number of contraction types of n-dimensional parallelohedra.

This page as a plain text file.
%I A071882 #16 Mar 02 2019 12:07:16
%S A071882 1,1,2,5,52,179372
%N A071882 Number of contraction types of n-dimensional parallelohedra.
%C A071882 Or, number of inequivalent Delaunay [Delone] decompositions of R^n.
%C A071882 Sikiric et al. say that actually a(5) = 181394. - _Andrey Zabolotskiy_, Mar 02 2019
%H A071882 Mathieu Dutour Sikirić, Alexey Garber, Achill Schürmann, Clara Waldmann, <a href="https://doi.org/10.1107/S2053273316011682">The complete classification of five-dimensional Dirichlet-Voronoi polyhedra of translational lattices</a>, Acta Crystallographica A72 (2016), 673-683; arXiv:<a href="https://arxiv.org/abs/1507.00238">1507.00238</a> [math.MG], 2015-2016.
%H A071882 P. Engel, <a href="https://doi.org/10.1107/S0108767300007145">The contraction types of parallelohedra in E^5</a>, Acta Cryst. A 56 (2000), 491-496.
%H A071882 M. I. Stogrin, <a href="http://mi.mathnet.ru/eng/tm3121">Regular Dirichlet-Voronoi partitions for the second triclinic group</a>, Trudy Matematicheskogo Instituta imeni V. A. Steklova, 123 (1973) = Proceedings of the Steklov Institute of Mathematics, 123 (1973).
%Y A071882 Cf. A071880, A071881.
%K A071882 nonn,hard,nice,more
%O A071882 0,3
%A A071882 _N. J. A. Sloane_, Jun 10 2002