A071911 Numbers m such that Stern's diatomic A002487(m) is divisible by 3.
0, 5, 7, 10, 14, 20, 28, 33, 35, 40, 45, 47, 49, 51, 56, 61, 63, 66, 70, 73, 75, 80, 85, 87, 90, 94, 98, 102, 105, 107, 112, 117, 119, 122, 126, 132, 140, 146, 150, 153, 155, 160, 165, 167, 170, 174, 180, 188, 196, 204, 210, 214, 217, 219, 224, 229, 231, 234, 238, 244, 252
Offset: 0
Keywords
Links
- Edsger W. Dijkstra, An exercise for Dr. R. M. Burstall, 1976. Reprinted in Edsger W. Dijkstra, Selected Writings on Computing, Springer-Verlag, 1982, pages 215-216.
- Edsger W. Dijkstra, More about the function ``fusc'', 1976. Reprinted in Edsger W. Dijkstra, Selected Writings on Computing, Springer-Verlag, 1982, pages 230-232.
- Bruce Reznick, Regularity Properties of the Stern Enumeration of the Rationals, Journal of Integer Sequences, volume 11, 2008, article 08.4.1. Also arXiv:math/0610601 [math.NT] 2006, and author's copy. Section 5 theorem 18 onward.
Programs
-
PARI
{ my(M=Mod('x, 'x^2+'x+2), f=[2,1, 0,-'x-1, -2,1, 0,'x-1], table=[1,3, 5,5, 7,1, 3,7]); a(n) = n<<=2; my(k=if(n,logint(n,2)+1), p=M^k, s=1); while(k>=0, my(t = n + (3<
>2; } \\ Kevin Ryde, Jan 09 2021 -
Python
def aupto(nn): ok = [1] + [0 for i in range(nn)] for m in range(nn+1): if ok[m]: # from formula for i in [2*m, 8*m-5, 8*m+5, 8*m-7, 8*m+7]: if 0 <= i <= nn: ok[i] = 1 return [m for m in range(nn+1) if ok[m]] print(aupto(252)) # Michael S. Branicky, Jan 09 2021
-
Python
from itertools import count, islice from functools import reduce def inA071911(n): return not (n and sum(reduce(lambda x,y:(x[0],(x[0]+x[1])%3) if int(y) else ((x[0]+x[1])%3,x[1]),bin(n)[-1:2:-1],(1,0)))%3) def A071911_gen(startvalue=0): # generator of terms >= startvalue return filter(inA071911, count(max(startvalue,0))) A071911_list = list(islice(A071911_gen(),20)) # Chai Wah Wu, May 18 2023
Formula
If m is in the sequence, then 2*m, 8*m +- 5, and 8*m +- 7 (when nonnegative) are in the sequence. Starting from m=0, this rule generates the sequence. [Reznick section 5 theorem 18] - Kevin Ryde, Jan 09 2021
Comments