cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071945 Triangle T(n,k) read by rows giving number of underdiagonal lattice paths from (0,0) to (n,k) using steps R=(1,0), V=(0,1) and D=(2,1).

This page as a plain text file.
%I A071945 #21 Apr 25 2020 01:25:02
%S A071945 1,1,1,1,3,3,1,5,9,9,1,7,19,31,31,1,9,33,73,113,113,1,11,51,143,287,
%T A071945 431,431,1,13,73,249,609,1153,1697,1697,1,15,99,399,1151,2591,4719,
%U A071945 6847,6847,1,17,129,601,2001,5201,11073,19617,28161,28161,1,19,163,863,3263
%N A071945 Triangle T(n,k) read by rows giving number of underdiagonal lattice paths from (0,0) to (n,k) using steps R=(1,0), V=(0,1) and D=(2,1).
%C A071945 Also could be titled: "Table read by antidiagonals upward: T(n,k) is the number of ways to move a chess king from (1,1) to (n,k) in the first quadrant using only right, diagonal up-right, and diagonal up-left moves." - _Peter Kagey_, Apr 20 2020
%H A071945 Peter Kagey, <a href="/A071945/b071945.txt">Table of n, a(n) for n = 0..8255</a> (first 128 rows, flattened)
%H A071945 D. Merlini, D. G. Rogers, R. Sprugnoli and M. C. Verri, <a href="http://dx.doi.org/10.4153/CJM-1997-015-x">On some alternative characterizations of Riordan arrays</a>, Canad J. Math., 49 (1997), 301-320.
%F A071945 G.f.: (1-q)/[z(1+tz)(2t-1+q)], where q=sqrt(1-4tz-4t^2z^2).
%e A071945 a(3,1)=5 because we have RRRV, RRVR, RVRR, RD and DR.
%e A071945 Triangle begins:
%e A071945 1
%e A071945 1 1
%e A071945 1 3    3
%e A071945 1 5    9   9
%e A071945 1 7   19  31   31
%e A071945 1 9   33  73  113  113
%e A071945 1 11  51 143  287  431   431
%e A071945 1 13  73 249  609 1153  1697  1697
%e A071945 1 15  99 399 1151 2591  4719  6847  6847
%e A071945 1 17 129 601 2001 5201 11073 19617 28161 28161
%Y A071945 Diagonal entries give A052709.
%K A071945 nonn,easy,tabl
%O A071945 0,5
%A A071945 _N. J. A. Sloane_, Jun 15 2002
%E A071945 Edited by _Emeric Deutsch_, Dec 21 2003