cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071946 Triangle T(n,k) read by rows giving number of underdiagonal lattice paths from (0,0) to (n,k) using only steps R = (1,0), V = (0,1) and D = (3,1).

This page as a plain text file.
%I A071946 #28 Jan 25 2025 08:34:56
%S A071946 1,1,1,1,2,2,1,4,6,6,1,6,13,19,19,1,8,23,44,63,63,1,10,37,87,156,219,
%T A071946 219,1,12,55,155,330,568,787,787,1,14,77,255,629,1260,2110,2897,2897,
%U A071946 1,16,103,395,1111,2527,4856,7972,10869,10869,1,18,133,583,1849,4706,10130,18889,30545,41414,41414
%N A071946 Triangle T(n,k) read by rows giving number of underdiagonal lattice paths from (0,0) to (n,k) using only steps R = (1,0), V = (0,1) and D = (3,1).
%H A071946 Alois P. Heinz, <a href="/A071946/b071946.txt">Rows n = 0..150, flattened</a>
%H A071946 D. Merlini, D. G. Rogers, R. Sprugnoli and M. C. Verri, <a href="http://dx.doi.org/10.4153/CJM-1997-015-x">On some alternative characterizations of Riordan arrays</a>, Canad J. Math., 49 (1997), 301-320.
%e A071946 Triangle T(n,k) begins:
%e A071946   1;
%e A071946   1, 1;
%e A071946   1, 2,  2;
%e A071946   1, 4,  6,  6;
%e A071946   1, 6, 13, 19, 19;
%e A071946   ...
%p A071946 T:= proc(n, k) option remember; `if`(n=0 and k=0, 1,
%p A071946      `if`(k<0 or n<k, 0, T(n-1, k)+T(n, k-1)+T(n-3, k-1)))
%p A071946     end:
%p A071946 seq(seq(T(n,k), k=0..n), n=0..12);  # _Alois P. Heinz_, May 05 2023
%t A071946 T[n_, k_] := T[n, k] = If[n == 0 && k == 0, 1,
%t A071946    If[k < 0 || n < k, 0, T[n-1, k] + T[n, k-1] + T[n-3, k-1]]];
%t A071946 Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Jan 25 2025, after _Alois P. Heinz_ *)
%Y A071946 Related arrays: A071943, A071944, A071945.
%Y A071946 A108076 is the reverse, A119254 is the row sums and A071969 is the last (largest) number in each row.
%K A071946 nonn,easy,tabl
%O A071946 0,5
%A A071946 _N. J. A. Sloane_, Jun 15 2002
%E A071946 More terms from _Joshua Zucker_, May 10 2006