cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071949 Triangle read by rows of numbers of paths in a lattice satisfying certain conditions.

Original entry on oeis.org

1, 1, 2, 1, 4, 10, 1, 6, 24, 66, 1, 8, 42, 172, 498, 1, 10, 64, 326, 1360, 4066, 1, 12, 90, 536, 2706, 11444, 34970, 1, 14, 120, 810, 4672, 23526, 100520, 312066, 1, 16, 154, 1156, 7410, 42024, 211546, 911068, 2862562, 1, 18, 192, 1582, 11088, 69002, 387456, 1951494, 8457504, 26824386
Offset: 0

Views

Author

N. J. A. Sloane, Jun 15 2002

Keywords

Examples

			Triangle begins:
  1;
  1, 2;
  1, 4, 10;
  1, 6, 24,  66;
  1, 8, 42, 172, 498;
  ...
		

Crossrefs

T(n, n)=A027307(n).

Programs

  • Maple
    T := proc(n,k) if k>0 and k<=n then (n-k+1)*sum(2^(j+1)*binomial(k,j+1)*binomial(n+k,j),j=0..k-1)/k elif k=0 then 1 else 0 fi end: seq(seq(T(n,k),k=0..n),n=0..10);
  • Mathematica
    T[_, 0] = 1;
    T[n_, n_] := T[n, n] = T[n, n-1] + T[n+1, n-1];
    T[n_, k_] /; 0 <= k < n := T[n, k] = T[n, k-1] + T[n+1, k-1] + T[n-1, k];
    T[, ] = 0;
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 15 2019 *)

Formula

T(n, k) = (n-k+1)*(Sum_{j=0..k-1} (2^(j+1)*binomial(k, j+1)*binomial(n+k, j)))/k for 0n.
T(n,0) = 1, T(n,n) = T(n,n-1) + T(n+1,n-1), otherwise T(n,k) = T(n,k-1) + T(n+1,k-1) + T(n-1,k). [Gerald McGarvey, Oct 09 2008]

Extensions

Edited by Emeric Deutsch, Mar 04 2004