A071949 Triangle read by rows of numbers of paths in a lattice satisfying certain conditions.
1, 1, 2, 1, 4, 10, 1, 6, 24, 66, 1, 8, 42, 172, 498, 1, 10, 64, 326, 1360, 4066, 1, 12, 90, 536, 2706, 11444, 34970, 1, 14, 120, 810, 4672, 23526, 100520, 312066, 1, 16, 154, 1156, 7410, 42024, 211546, 911068, 2862562, 1, 18, 192, 1582, 11088, 69002, 387456, 1951494, 8457504, 26824386
Offset: 0
Examples
Triangle begins: 1; 1, 2; 1, 4, 10; 1, 6, 24, 66; 1, 8, 42, 172, 498; ...
Links
- D. Merlini, D. G. Rogers, R. Sprugnoli and M. C. Verri, On some alternative characterizations of Riordan arrays, Canad J. Math., 49 (1997), 301-320.
Crossrefs
T(n, n)=A027307(n).
Programs
-
Maple
T := proc(n,k) if k>0 and k<=n then (n-k+1)*sum(2^(j+1)*binomial(k,j+1)*binomial(n+k,j),j=0..k-1)/k elif k=0 then 1 else 0 fi end: seq(seq(T(n,k),k=0..n),n=0..10);
-
Mathematica
T[_, 0] = 1; T[n_, n_] := T[n, n] = T[n, n-1] + T[n+1, n-1]; T[n_, k_] /; 0 <= k < n := T[n, k] = T[n, k-1] + T[n+1, k-1] + T[n-1, k]; T[, ] = 0; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 15 2019 *)
Formula
T(n, k) = (n-k+1)*(Sum_{j=0..k-1} (2^(j+1)*binomial(k, j+1)*binomial(n+k, j)))/k for 0n.
T(n,0) = 1, T(n,n) = T(n,n-1) + T(n+1,n-1), otherwise T(n,k) = T(n,k-1) + T(n+1,k-1) + T(n-1,k). [Gerald McGarvey, Oct 09 2008]
Extensions
Edited by Emeric Deutsch, Mar 04 2004