cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A071978 Right diagonal of A071977.

Original entry on oeis.org

1, 5, 10, 17, 23, 41, 50, 65, 79, 103, 115, 151, 165, 197, 226, 257, 275, 329, 349, 399, 436, 483, 507, 577, 608, 665, 706, 771, 801, 913, 945, 1009, 1063, 1135, 1186, 1291, 1329, 1409, 1474, 1573, 1615, 1763, 1807, 1905, 1988, 2083, 2131, 2275, 2332, 2457
Offset: 1

Views

Author

Amarnath Murthy, Jun 18 2002

Keywords

Programs

  • Mathematica
    a = {1}; k = 2; Do[i = 1; While[i < n + 1, If[ GCD[k, n] == 1, a = Append[a, k]; i++ ]; k++ ], {n, 2, 55}]; Table[ a[[n(n + 1)/2]], {n, 1, 55}]

Extensions

Edited by Robert G. Wilson v, Jun 28 2002

A071979 Left diagonal of A071977.

Original entry on oeis.org

1, 3, 7, 11, 18, 25, 43, 51, 67, 81, 104, 119, 152, 167, 199, 227, 258, 277, 330, 351, 400, 437, 484, 509, 578, 609, 667, 709, 772, 803, 914, 947, 1010, 1065, 1136, 1187, 1292, 1331, 1411, 1477, 1574, 1619, 1764, 1809, 1906, 1989, 2084, 2135, 2276, 2333
Offset: 1

Views

Author

Amarnath Murthy, Jun 18 2002

Keywords

Programs

  • Mathematica
    a = {1}; k = 2; Do[i = 1; While[i < n + 1, If[ GCD[k, n] == 1, a = Append[a, k]; i++ ]; k++ ], {n, 2, 55}]; Table[ a[[n(n - 1)/2 + 1]], {n, 1, 55}]

Extensions

Edited by Robert G. Wilson v, Jun 28 2002

A077164 Triangle in which n-th row gives n numbers relatively prime to n and greater than all earlier terms in the triangle.

Original entry on oeis.org

2, 3, 5, 7, 8, 10, 11, 13, 15, 17, 18, 19, 21, 22, 23, 25, 29, 31, 35, 37, 41, 43, 44, 45, 46, 47, 48, 50, 51, 53, 55, 57, 59, 61, 63, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 81, 83, 87, 89, 91, 93, 97, 99, 101, 103, 104, 105, 106, 107, 108, 109, 111, 112, 113, 114, 115, 119
Offset: 1

Views

Author

Amarnath Murthy, Oct 31 2002

Keywords

Examples

			Triangle begins
   2;
   3,  5;
   7,  8, 10;
  11, 13, 15, 17;
  18, 19, 21, 22, 23;
  ...
		

Crossrefs

Programs

  • Maple
    b[1,1]:=2:r:=3:for n from 2 to 15 do for i from 1 to n do while(gcd(r,n)>1) do r:=r+1:od:b[i,n]:=r:r:=r+1:od:od:seq( seq(b[k,j],k=1..j),j=1..15); # Sascha Kurz, May 09 2004

Formula

a(n) = A071977(n) for n>1. - Georg Fischer, Oct 06 2018

Extensions

Corrected and extended by Sascha Kurz, May 09 2004

A072166 Triangle in which first row is {1}; to get n-th row take first n numbers greater than last number in previous row which are congruent to 1 (mod n).

Original entry on oeis.org

1, 3, 5, 7, 10, 13, 17, 21, 25, 29, 31, 36, 41, 46, 51, 55, 61, 67, 73, 79, 85, 92, 99, 106, 113, 120, 127, 134, 137, 145, 153, 161, 169, 177, 185, 193, 199, 208, 217, 226, 235, 244, 253, 262, 271, 281, 291, 301, 311, 321, 331, 341, 351, 361, 371, 375, 386, 397
Offset: 1

Views

Author

Robert G. Wilson v, Jun 28 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a = {1}; k = 2; Do[i = 1; While[i < n + 1, If[ Mod[k, n] == 1, a = Append[a, k]; i++ ]; k++ ], {n, 2, 11}]; a
Showing 1-4 of 4 results.