This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A071985 #12 Dec 29 2022 06:46:29 %S A071985 1,3,7,17,47,158,681,3209,17989,104289,635867 %N A071985 a(n) is the smallest positive integer that cannot be obtained using at most n-1 of the integers {1, 2, ..., n} using each number at most once and the operators +, -, *, /. %C A071985 For all n>=2, A060315(n+1) > a(n) > A060315(n). %H A071985 Gilles Bannay, <a href="https://web.archive.org/web/20061201125224/http://gilles.bannay.free.fr/jeux_us.html">Countdown Problem</a> %H A071985 <a href="/index/Fo#4x4">Index entries for similar sequences</a> %e A071985 a(3)=7 because using two of the numbers {1,2,3} with the four operations we can obtain 1=1, 2=2, 3=3, 3+1=4, 3+2=5, 3*2=6 but we cannot obtain 7 in the same way. %o A071985 (Python) %o A071985 def a(n): %o A071985 R = dict() # index of each reachable subset is [card(s)-1][s] %o A071985 for i in range(n): R[i] = dict() %o A071985 for i in range(1, n+1): R[0][(i,)] = {i} %o A071985 reach = set(i for i in range(1, n+1)) if n > 1 else set() %o A071985 for j in range(1, n-1): %o A071985 for i in range((j+1)//2): %o A071985 for s1 in R[i]: %o A071985 for s2 in R[j-1-i]: %o A071985 if set(s1) & set(s2) == set(): %o A071985 s12 = tuple(sorted(set(s1) | set(s2))) %o A071985 if s12 not in R[len(s12)-1]: %o A071985 R[len(s12)-1][s12] = set() %o A071985 for a in R[i][s1]: %o A071985 for b in R[j-1-i][s2]: %o A071985 allowed = [a+b, a*b, a-b, b-a] %o A071985 if a!=0 and b%a==0: allowed.append(b//a) %o A071985 if b!=0 and a%b==0: allowed.append(a//b) %o A071985 R[len(s12)-1][s12].update(allowed) %o A071985 reach.update(allowed) %o A071985 k = 1 %o A071985 while k in reach: k += 1 %o A071985 return k %o A071985 print([a(n) for n in range(1, 6)]) # _Michael S. Branicky_, Jul 29 2022 %Y A071985 Cf. A060315. %K A071985 hard,more,nonn %O A071985 1,2 %A A071985 Koksal Karakus (karakusk(AT)hotmail.com), Jun 17 2002 %E A071985 a(11) from _Michael S. Branicky_, Jul 29 2022