cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072016 Numbers k such that gcd(k, reverse(k)) = 27 = 3^3, where reverse(x) = A004086(x).

This page as a plain text file.
%I A072016 #15 Sep 08 2022 08:45:06
%S A072016 2889,3699,3888,3969,4779,4887,5589,5697,5778,5859,5886,5967,6399,
%T A072016 6669,6777,6885,6939,7398,7479,7587,7668,7695,7749,7776,7857,7884,
%U A072016 7938,7965,8289,8397,8559,8667,8775,8829,8883,8937,9099,9288,9369,9396,9477,9558,9585
%N A072016 Numbers k such that gcd(k, reverse(k)) = 27 = 3^3, where reverse(x) = A004086(x).
%C A072016 Solutions to gcd(k, reverse(k)) = 1,3,9 (lower powers of 3) are trivial (see A072005).
%H A072016 Vincenzo Librandi, <a href="/A072016/b072016.txt">Table of n, a(n) for n = 1..1030</a>
%e A072016 2889 = 107*3*3*3, 9889 = 3*3*3*3*2*61.
%t A072016 Select[Range[10^4], GCD[#, FromDigits[Reverse[IntegerDigits[#]]]] == 27 &] (* _Vincenzo Librandi_, Jul 11 2018 *)
%o A072016 (PARI) isok(n) = gcd(n, fromdigits(Vecrev(digits(n)))) == 27; \\ _Michel Marcus_, Jul 11 2018
%o A072016 (Magma) [n: n in [1..10^4] | Gcd(n,Seqint(Reverse(Intseq(n)))) eq 27]; // _Vincenzo Librandi_, Jul 11 2018
%Y A072016 Cf. A004086, A055483, A069554, A071686, A072005.
%K A072016 nonn,base
%O A072016 1,1
%A A072016 _Labos Elemer_, Jun 05 2002