cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072080 Number of (nontrivial) zeros of zeta(z) with 0 < Im(z) < 10^n.

This page as a plain text file.
%I A072080 #38 Feb 16 2025 08:32:46
%S A072080 0,29,649,10142,138069,1747146,21136125,248008025,2846548032,
%T A072080 32130158315,357948363084,3945951430271,43124192297102,
%U A072080 467888702914983,5045354828589535,54118226280292478
%N A072080 Number of (nontrivial) zeros of zeta(z) with 0 < Im(z) < 10^n.
%C A072080 a(n) ~ A259506(10^n). - _Arkadiusz Wesolowski_, Nov 08 2015
%H A072080 LMFDB base, <a href="https://www.lmfdb.org/zeros/zeta/">Zeros of zeta(s)</a> (computed by David Platt).
%H A072080 Andrew Odlyzko, <a href="https://www-users.cse.umn.edu/~odlyzko/zeta_tables/">Tables of zeros of the Riemann zeta function</a>
%H A072080 Mathematics StackExchange user Rudolph, <a href="https://math.stackexchange.com/questions/2969120/">Does this contour integral actually count the roots of zeta(s) with imaginary part <T?</a>, 2018. [Gives a(17)-a(20) as 577829042746896155, 6144758226908675407, 65112260263483892774, 687769382578810314775.]
%H A072080 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RiemannZetaFunctionZeros.html">Riemann Zeta Function Zeros</a>
%H A072080 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Xi-Function.html">Xi-Function</a>
%H A072080 <a href="/index/Z#zeta_function">Index entries for zeta function</a>.
%o A072080 (PARI) a(n)=#lfunzeros(lzeta,10^n) \\ _Charles R Greathouse IV_, Mar 10 2016
%K A072080 nonn,more
%O A072080 1,2
%A A072080 _Eric W. Weisstein_, Jun 13 2002
%E A072080 More terms from Andrew Odlyzko, Jun 14 2002
%E A072080 a(7)-a(11) based on LMFDB data from _Artur Jasinski_, Jan 03 2020
%E A072080 a(11) corrected based on LMFDB data by _Charles R Greathouse IV_, Aug 23 2022
%E A072080 a(12)-a(16) added by _Fredrik Johansson_, May 01 2023