This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A072087 #27 Nov 03 2023 08:40:57 %S A072087 1,3,7,9,31,21,127,27,49,93,3583,63,8191,381,217,81,131071,147,524287, %T A072087 279,889,10749,14680063,189,961,24573,343,1143,1073479679,651, %U A072087 2147483647,243,25081,393213,3937,441,266287972351,1572861,57337,837 %N A072087 Least k such that A072084(k) = n. %C A072087 If p is a Mersenne prime then a(p) = 2^p - 1 (A000120(2^n-1)=n), for other primes p: a(p) > 2^p - 1. %H A072087 Amiram Eldar, <a href="/A072087/b072087.txt">Table of n, a(n) for n = 1..3322</a> %H A072087 <a href="/index/Di#divseq">Index to divisibility sequences</a>. %F A072087 Completely multiplicative with a(p) = A061712(p). - _David W. Wilson_, Aug 03 2005 %F A072087 Sum_{n>=1} 1/a(n) = Product_{p prime} 1/(1 - 1/A061712(p)) = 1.82343415954263449963... . - _Amiram Eldar_, Nov 02 2023 %t A072087 s[n_] := s[n] = Module[{p = 2}, While[DigitCount[p, 2, 1] != n, p = NextPrime[p]]; p]; f[p_, e_] := s[p]^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 22] (* _Amiram Eldar_, Nov 02 2023 *) %o A072087 (Haskell) %o A072087 a072087 1 = 1 %o A072087 a072087 n = product $ map a061712 $ a027746_row n %o A072087 -- _Reinhard Zumkeller_, Feb 10 2013 %Y A072087 Cf. A000120, A000043, A000668, A027746, A061712, A072084. %K A072087 nonn,mult %O A072087 1,2 %A A072087 _Reinhard Zumkeller_, Jun 14 2002 %E A072087 More terms from _David W. Wilson_, Aug 03 2005