This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A072113 #14 Jul 06 2024 10:25:25 %S A072113 0,3,23,1,1,16,1,2,1,8,1,274,3,1,5,1,2,1,16,1,3,3,2,1,4,1,1,2,1,2,1,2, %T A072113 1,1,2,16,3,3,2,1,1,1,2,69,121,1,5,1,2,1,2,1,1,1,2,1,12,4,1,1,1,1,2,1, %U A072113 2,3,3,1,3,2,4,1,7,1,16,2,4,1,2,7,2,3,1,3,2,1,1,1,1,2,1,1,3,1,1,3,2,1 %N A072113 Continued fraction expansion of Hall and Tenenbaum constant. %C A072113 For any multiplicative function g with values -1<= g(k) <= 1, for any real x >=2, Sum( i<= x, g(i) ) << x * exp{ -K * Sum( p<=x, (1-g(p))/p ) } and K is the optimal constant satisfying this inequality ( Hall and Tenenbaum, 1991). %D A072113 G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, p. 348, Publications de l'Institut Cartan, 1990. %F A072113 K = cos(S) = 0.3287... where S it the root 0< S < 2Pi of sin(S)+(Pi-S)*cos(S) = Pi/2. %o A072113 (PARI) \p200; %o A072113 contfrac(cos(solve(X=0,2*Pi,sin(X)+(Pi-X)*cos(X)-Pi/2))) %Y A072113 Cf. A072112 (decimal expansion). %K A072113 base,cofr,easy,nonn %O A072113 0,2 %A A072113 _Benoit Cloitre_, Jun 19 2002 %E A072113 Offset changed by _Andrew Howroyd_, Jul 06 2024