cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072115 Continued fraction expansion of abs(C) where C=-0.2959050055752...is the real negative solution to zeta(x)=x.

This page as a plain text file.
%I A072115 #8 Jul 06 2024 10:25:20
%S A072115 0,3,2,1,1,1,2,1,7,14,1,2,10,1,5,3,1,7,2,1,2,2,2,4,1,1,12,1,1,1,14,2,
%T A072115 10,3,5,6,2,1,6,13,1,2,2,4,8,1,4,8,2,1,16,1,1,1,1,4,2,1,1,1,3,13,4,1,
%U A072115 2,1,6,1,1,2,43,1,3,1,1,2,2,2,1,2,2,2,10,5,4,8,1,5,3,2,1,1,3,2,19
%N A072115 Continued fraction expansion of abs(C) where C=-0.2959050055752...is the real negative solution to zeta(x)=x.
%C A072115 Start from any complex number z=x+iy, not solution to zeta(z)=z, iterate the zeta function on z. If zeta_m(z) (=zeta(zeta(....(z)..)) m times) has a limit when m grows, then this limit seems to always be the real number : C=-0.2959050055752....Example: if z=3+5I after 30 iterations : zeta_30(z)=-0.29590556499...-0.00000041029065...*I
%o A072115 (PARI) \p150 contfrac(abs(solve(X=-1,0,zeta(X)-X)))
%Y A072115 Cf. A069857 (decimal expansion).
%K A072115 base,cofr,easy,nonn
%O A072115 0,2
%A A072115 _Benoit Cloitre_, Jun 19 2002
%E A072115 Offset changed by _Andrew Howroyd_, Jul 06 2024