This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A072209 #25 Feb 25 2025 07:16:40 %S A072209 1,1,1,1,2,1,2,2,2,4,4,2,8,2,6,4,10,8,4,6,12,8,8,12,6,16,12,10,22,12, %T A072209 8,24,6,12,28,16,8,20,24,24,12,24,18,16,40,12,40,22,32,12,40,32,24,52, %U A072209 36,48,28,40,16,40,36,48,20,64,44,24,24,72,40,48,24,18,54 %N A072209 Number of primitive roots of those integers with at least one primitive root. %C A072209 Essentially sequence A046144 with all zero entries deleted. %H A072209 T. D. Noe, <a href="/A072209/b072209.txt">Table of n, a(n) for n = 1..10000</a> %F A072209 a(n) = phi(phi(A033948(n))). %t A072209 Reap[ Do[ If[n == 1, Sow[1], If[ IntegerQ[ PrimitiveRoot[n]], Sow[ EulerPhi[ EulerPhi[n]]]]] , {n, 1, 100}]][[2, 1]] (* _Jean-François Alcover_, Feb 24 2012 *) %t A072209 Join[{1},(Length/@PrimitiveRootList[Range[300]])/.(0->Nothing)] (* _Harvey P. Dale_, Oct 01 2024 *) %o A072209 (PARI) is(n)=if(n%2, isprimepower(n) || n==1, n==2 || n==4 || (isprimepower(n/2, &n) && n>2)); %o A072209 lista(nn) = for (n=1, nn, if (is(n), print1(eulerphi(eulerphi(n)), ", "))); \\ _Michel Marcus_, May 12 2017 %o A072209 (Python) %o A072209 from sympy import primepi, integer_nthroot, totient %o A072209 def A072209(n): %o A072209 def bisection(f,kmin=0,kmax=1): %o A072209 while f(kmax) > kmax: kmax <<= 1 %o A072209 kmin = kmax >> 1 %o A072209 while kmax-kmin > 1: %o A072209 kmid = kmax+kmin>>1 %o A072209 if f(kmid) <= kmid: %o A072209 kmax = kmid %o A072209 else: %o A072209 kmin = kmid %o A072209 return kmax %o A072209 def f(x): return int(n-1+x-(x>=2)-(x>=4)-sum(primepi(integer_nthroot(x,k)[0])-1 for k in range(1,x.bit_length()))-sum(primepi(integer_nthroot(x>>1,k)[0])-1 for k in range(1,x.bit_length()-1))) %o A072209 return totient(totient(bisection(f,n,n))) # _Chai Wah Wu_, Feb 24 2025 %Y A072209 Cf. A033948, A046144. %K A072209 nice,nonn %O A072209 1,5 %A A072209 _Lekraj Beedassy_, Jul 03 2002