cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072213 Number of partitions of n^2.

This page as a plain text file.
%I A072213 #24 Oct 27 2024 11:13:09
%S A072213 1,1,5,30,231,1958,17977,173525,1741630,18004327,190569292,2056148051,
%T A072213 22540654445,250438925115,2814570987591,31946390696157,
%U A072213 365749566870782,4219388528587095,49005643635237875,572612058898037559
%N A072213 Number of partitions of n^2.
%H A072213 Vaclav Kotesovec, <a href="/A072213/b072213.txt">Table of n, a(n) for n = 0..900</a> (terms 0..250 from Alois P. Heinz)
%F A072213 a(n) = A000041(n^2).
%F A072213 a(n) ~ exp(Pi*sqrt(2/3)*n) / (4*sqrt(3)*n^2). - _Vaclav Kotesovec_, Dec 01 2015
%p A072213 A072213 := proc(n) combinat[numbpart](n^2) ; end proc:
%p A072213 seq(A072213(n),n=0..10) ; # _R. J. Mathar_, Jan 24 2011
%t A072213 Table[ PartitionsP[n^2], {n, 1, 20}]
%o A072213 (PARI) a(n)=numbpart(n^2)
%o A072213 (PARI) a(n)=polcoeff(1/eta(x),n^2,x)
%o A072213 (Sage) [number_of_partitions(n^2)for n in range(0,26)] # _Zerinvary Lajos_, Nov 26 2009
%Y A072213 Cf. A000041, A000290, A072243, A219430.
%Y A072213 Cf. A161407, A161408. - _Reinhard Zumkeller_, Jun 10 2009
%K A072213 nonn
%O A072213 0,3
%A A072213 _Jeff Burch_, Jul 03 2002