cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072248 Triangle T(n,k) (n >= 2, 1 <= k <= n-1) giving number of non-crossing trees with n nodes and height k.

Original entry on oeis.org

1, 1, 2, 1, 7, 4, 1, 20, 26, 8, 1, 54, 126, 76, 16, 1, 143, 548, 504, 200, 32, 1, 376, 2259, 2900, 1656, 496, 64, 1, 986, 9034, 15506, 11528, 4896, 1184, 128, 1, 2583, 35469, 79354, 73172, 39552, 13536, 2752, 256, 1, 6764, 137644, 394642, 439272, 285992, 123904, 35712, 6272, 512
Offset: 2

Views

Author

N. J. A. Sloane, Jul 06 2002

Keywords

Comments

For n >= 2, the n-th row has n-1 terms.

Examples

			Triangle T(n,k) begins:
1;
1,   2;
1,   7,    4;
1,  20,   26,     8;
1,  54,  126,    76,    16;
1, 143,  548,   504,   200,   32;
1, 376, 2259,  2900,  1656,  496,   64;
1, 986, 9034, 15506, 11528, 4896, 1184, 128;
		

Crossrefs

Row sums give A001764.

Programs

  • Maple
    T[0]:=z: for k from 1 to 10 do T[k]:=simplify(z/(1-T[k-1]^2/z)) od:for k from 1 to 10 do t[k]:=series(T[k]-T[k-1],z=0,15) od: for n from 2 to 11 do seq(coeff(t[k],z^n),k=1..n-1) od; # Emeric Deutsch, Dec 30 2004

Formula

Column g.f. are T(k) - T(k-1) (k = 1, 2, ...), where T(0) = z and T(k) = z/(1 - T(k-1)^2/z). - Emeric Deutsch, Dec 30 2004

Extensions

More terms from Emeric Deutsch, Dec 30 2004