A072248 Triangle T(n,k) (n >= 2, 1 <= k <= n-1) giving number of non-crossing trees with n nodes and height k.
1, 1, 2, 1, 7, 4, 1, 20, 26, 8, 1, 54, 126, 76, 16, 1, 143, 548, 504, 200, 32, 1, 376, 2259, 2900, 1656, 496, 64, 1, 986, 9034, 15506, 11528, 4896, 1184, 128, 1, 2583, 35469, 79354, 73172, 39552, 13536, 2752, 256, 1, 6764, 137644, 394642, 439272, 285992, 123904, 35712, 6272, 512
Offset: 2
Examples
Triangle T(n,k) begins: 1; 1, 2; 1, 7, 4; 1, 20, 26, 8; 1, 54, 126, 76, 16; 1, 143, 548, 504, 200, 32; 1, 376, 2259, 2900, 1656, 496, 64; 1, 986, 9034, 15506, 11528, 4896, 1184, 128;
Links
- E. Deutsch and M. Noy, Statistics on non-crossing trees, Discrete Math., 254 (2002), 75-87.
Programs
-
Maple
T[0]:=z: for k from 1 to 10 do T[k]:=simplify(z/(1-T[k-1]^2/z)) od:for k from 1 to 10 do t[k]:=series(T[k]-T[k-1],z=0,15) od: for n from 2 to 11 do seq(coeff(t[k],z^n),k=1..n-1) od; # Emeric Deutsch, Dec 30 2004
Formula
Column g.f. are T(k) - T(k-1) (k = 1, 2, ...), where T(0) = z and T(k) = z/(1 - T(k-1)^2/z). - Emeric Deutsch, Dec 30 2004
Extensions
More terms from Emeric Deutsch, Dec 30 2004
Comments