cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072285 Numerators of inverse unimodal analog of binomial coefficients: binomial(n,m) = Sum_{k=0..n-m} a(2*k+m-1, 2*k).

This page as a plain text file.
%I A072285 #11 Aug 27 2019 02:57:07
%S A072285 1,1,1,1,3,1,1,15,2,1,1,35,3,5,1,1,315,4,35,3,1,1,693,5,105,6,7,1,1,
%T A072285 3003,6,1155,10,63,4,1,1,6435,7,3003,15,231,10,9,1,1,109395,8,15015,
%U A072285 21,3003,20,99,5,1,1,230945,9,36465,28,9009,35,429,15,11,1
%N A072285 Numerators of inverse unimodal analog of binomial coefficients: binomial(n,m) = Sum_{k=0..n-m} a(2*k+m-1, 2*k).
%H A072285 G. C. Greubel, <a href="/A072285/b072285.txt">Rows n = 0..100 of triangle, flattened</a>
%F A072285 a(n, m) = binomial(n-m/2+1, n-m+1) - binomial(n-m/2, n-m+1).
%t A072285 a[n_, m_]:= Binomial[n -m/2 +1, n-m+1] - Binomial[n -m/2, n-m+1]; Flatten[Table[Numerator[a[n, m]], {n, 0, 11}, {m, 0, n}]]
%o A072285 (PARI) a(n,m) = binomial(n-m/2, n-m);
%o A072285 for(n=0,10, for(m=0,n, print1(numerator(a(n,m)), ", "))) \\ _G. C. Greubel_, Aug 26 2019
%o A072285 (Sage) [[numerator( binomial(n-m/2, n-m) ) for m in (0..n)] for n in (0..11)] # _G. C. Greubel_, Aug 26 2019
%Y A072285 Cf. A072286, A071922.
%K A072285 nonn,easy,frac,tabl
%O A072285 0,5
%A A072285 Michele Dondi (bik.mido(AT)tiscalinet.it), Jul 11 2002