A072340 Number of steps to reach an integer starting with n/3 and iterating the map x -> x*ceiling(x), or -1 if no integer is ever reached.
0, 2, 6, 0, 1, 1, 0, 5, 2, 0, 3, 2, 0, 1, 1, 0, 2, 4, 0, 3, 4, 0, 1, 1, 0, 22, 7, 0, 2, 5, 0, 1, 1, 0, 7, 2, 0, 4, 2, 0, 1, 1, 0, 2, 5, 0, 13, 9, 0, 1, 1, 0, 3, 3, 0, 2, 3, 0, 1, 1, 0, 3, 2, 0, 5, 2, 0, 1, 1, 0, 2, 3, 0, 8, 3, 0, 1, 1, 0, 5, 4, 0, 2, 4, 0, 1, 1, 0, 14, 2, 0, 3, 2, 0, 1, 1, 0, 2, 9, 0, 3, 9, 0, 1, 1
Offset: 3
Keywords
References
- N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.
Links
- R. J. Mathar, Table of n, a(n) for n = 3..7147
- J. C. Lagarias and N. J. A. Sloane, Approximate squaring (pdf, ps), Experimental Math., 13 (2004), 113-128.
- N. J. A. Sloane, Seven Staggering Sequences.
Programs
-
Maple
g := proc(x) local M,t1,t2,t3; M := 3^100; t1 := ceil(x) mod M; t2 := x*t1; t3 := numer(t2) mod M; t3/denom(t2); end; f := proc(n) local t1,c; global g; if type(n, 'integer') then RETURN(0); fi; t1 := g(n); c := 1; while not type(t1, 'integer') do c := c+1; t1 := g(t1); od; RETURN(c); end; [seq(f(n/3),n=3..120)]; # this gives the correct answer as long as the answer is < 99.
-
Mathematica
a[n_] := Module[{x = n/3, s = 0}, While[!IntegerQ[x], x *= Ceiling[x]; s++]; s]; Table[a[n], {n, 3, 107}] (* Jean-François Alcover, Jan 27 2019, from PARI *)
-
PARI
A072340(n)={ local(x,s) ; x=n/3 ; s=0 ; while( type(x)!="t_INT", x *= ceil(x) ; s++ ; ) ; return(s) ; } { for(n=3,10000, print(n," ",A072340(n)) ; ) ; } \\ R. J. Mathar, Nov 25 2006
Comments