cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072346 Volume of n-dimensional sphere of radius r is V_n*r^n = Pi^(n/2)*r^n/(n/2)! = C_n*Pi^floor(n/2)*r^n; sequence gives denominator of C_n.

Original entry on oeis.org

1, 1, 1, 3, 2, 15, 6, 105, 24, 945, 120, 10395, 720, 135135, 5040, 2027025, 40320, 34459425, 362880, 654729075, 3628800, 13749310575, 39916800, 316234143225, 479001600, 7905853580625, 6227020800, 213458046676875, 87178291200, 6190283353629375, 1307674368000
Offset: 0

Views

Author

N. J. A. Sloane, Jul 31 2002

Keywords

Comments

Answer to question of how to extend the sequence 1, 2 r, Pi r^2, 4 Pi r^3 / 3, Pi^2 r^4 / 2, ...
Surface area of n-dimensional sphere of radius r is n*V_n*r^(n-1).

Examples

			Sequence of C_n's begins 1, 2, 1, 4/3, 1/2, 8/15, 1/6, 16/105, 1/24, 32/945, 1/120, 64/10395, ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 9, Eq. 17.
  • Dusko Letic, Nenad Cakic, Branko Davidovic and Ivana Berkovic, Orthogonal and diagonal dimension fluxes of hyperspherical function, Advances in Difference Equations 2012, 2012:22; http://www.advancesindifferenceequations.com/content/2012/1/22. - From N. J. A. Sloane, Sep 04 2012

Crossrefs

Cf. A072345.
Cf. A001147.

Programs

  • Mathematica
    f[n_] := Pi^(n/2 - Floor[n/2])/(n/2)!; Table[ Denominator[ f[n]], {n, 0, 30} ]

Formula

(n/2)! if n even, n!! if n odd.