This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A072353 #41 Jul 13 2025 19:53:00 %S A072353 6,11,16,20,25,30,35,39,44,49,54,59,63,68,73,78,83,87,92,97,102,106, %T A072353 111,116,121,126,130,135,140,145,150,154,159,164,169,173,178,183,188, %U A072353 193,197,202,207,212,216,221,226,231,236,240,245,250,255,260,264,269,274 %N A072353 a(n) is the index of the largest Fibonacci number containing n digits. %C A072353 Partial sums of A050815: a(n) = Sum_{k=1..n} A050815(k). - _Reinhard Zumkeller_, Apr 14 2005 %C A072353 Equivalently, a(n) is the number of Fibonacci numbers < 10^n including F(0) = 0 and F(1) = F(2) = 1 once. - _Derek Orr_, Jun 01 2014 %H A072353 Harvey P. Dale, <a href="/A072353/b072353.txt">Table of n, a(n) for n = 1..1000</a> %H A072353 Jürgen Spilker, <a href="http://dx.doi.org/10.5169/seals-8480">Die Ziffern der Fibonacci-Zahlen</a>, Elemente der Mathematik 58 (Birkhäuser 2003). %H A072353 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FibonacciNumber.html">Fibonacci Number</a> %F A072353 Limit_{n->oo} a(n)/n = 1/log_10((1+sqrt(5))/2) = 1/A097348 = 4.784... . - _Reinhard Zumkeller_, Apr 14 2005. %F A072353 a(n) = floor(n*log(10)/log(phi)+log(5)/(2*log(phi))), where phi=(1+sqrt(5))/2, the golden ratio. - _Hans J. H. Tuenter_, Jul 08 2025 %e A072353 a(3)=16, as the 16th Fibonacci number is the largest Fibonacci number with 3 digits. %t A072353 With[{fibs=Fibonacci[Range[300]]},Flatten[Position[fibs,#]&/@ Table[ Max[ Select[fibs,IntegerLength[#]==n&]],{n,60}]]] (* _Harvey P. Dale_, Nov 09 2011 *) %o A072353 (Python) %o A072353 def A072353_list(n): %o A072353 list = [] %o A072353 x, y, index = 1, 1, 1 %o A072353 while len(list) < n: %o A072353 if len(str(x)) < len(str(y)): %o A072353 list.append(index) %o A072353 x, y = y, x + y %o A072353 index += 1 %o A072353 return list %o A072353 print(A072353_list(57)) # _M. Eren Kesim_, Jul 19 2021 %Y A072353 Cf. A072351, A072352, A105564, A105566, A097348, A050815, A060384, A000045. %K A072353 base,nonn %O A072353 1,1 %A A072353 _Shyam Sunder Gupta_, Jul 17 2002 %E A072353 More terms from _Reinhard Zumkeller_, Apr 14 2005 %E A072353 Name edited by _Michel Marcus_, Jul 19 2021