cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072372 a(0) = 1, a(1) = 1, a(n) = 2*a(n-1) + (2*n-1)^2*a(n-2) for n > 1.

This page as a plain text file.
%I A072372 #12 Dec 24 2019 09:14:59
%S A072372 1,1,11,47,633,5073,86739,1030815,21577905,341061345,8471746395,
%T A072372 167351545935,4816256934825,114227230079025,3739505765645475,
%U A072372 103544112027750975,3800753264840803425,120361044527902418625,4896644838485789032875,174567559635669989163375
%N A072372 a(0) = 1, a(1) = 1, a(n) = 2*a(n-1) + (2*n-1)^2*a(n-2) for n > 1.
%D A072372 A. E. Jolliffe, Continued Fractions, in Encyclopaedia Britannica, 11th ed., pp. 30-33; see p. 31.
%p A072372 f := proc(n) local a, b, t1, t2, t3, i, j, k; option remember; a := 1; b := 1; if n = 0 then RETURN(a); elif n = 1 then RETURN(b); else RETURN(2*f(n - 1) + (2*n - 1)^2*f(n - 2)); fi; end: seq(f(n), n=0..20); # adapted to offset 0 by _Georg Fischer_, Dec 23 2019
%t A072372 RecurrenceTable[{a[0]==a[1]==1, a[n]==2*a[n-1] + (2n-1)^2*a[n-2]}, a, {n,0,20}]
%t A072372 (* _Harvey P. Dale_, Nov 15 2018, adapted to offset 0 by _Georg Fischer_, Dec 23 2019 *)
%Y A072372 Cf. A024199, A024200.
%K A072372 nonn
%O A072372 0,3
%A A072372 _N. J. A. Sloane_, Jul 19 2002
%E A072372 Definition adapted to offset 0 by _Georg Fischer_, Dec 23 2019