A072391 D2(n,n) = Sum_{1<=k<=n} (d_n(k^2)), where d_a(k^2)=card{d: d|k and 1<=d<=a} for real a.
1, 3, 5, 9, 11, 16, 18, 23, 28, 33, 35, 44, 46, 51, 56, 64, 66, 76, 78, 87, 92, 97, 99, 111, 118, 123, 129, 138, 140, 154, 156, 165, 170, 175, 180, 198, 200, 205, 210, 222, 224, 238, 240, 249, 259, 264, 266, 283, 292, 304, 309, 318, 320, 333, 338, 350, 355, 360
Offset: 1
Keywords
Links
- Kevin A. Broughan, Restricted divisor sums, Acta Arithmetica, vol. 101, (2002), pp. 105-114.
Crossrefs
Cf. A019554.
Formula
a(n)=Sum_{k<=n} (floor(n/A019554(k))) Asymptotic expression: a(n)=(n*log(n)^2/(4*zeta(2)))+(n*log(n)/zeta(2))*((3*gamma/2)-(zeta'(2)/zeta(2))), gamma = A001620.
Asymptotic expression (includes error term): a(n)=(n*log(n)^2/(4*zeta(2)))+(n*log(n)/zeta(2))*((3*gamma/2)-(zeta'(2)/zeta(2)))+O(n), gamma = A001620.