This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A072394 #16 Feb 11 2014 19:09:01 %S A072394 1563,1633,18673,32207,1405313,1567563,1656833,193613415,325933027, %T A072394 376491249,2287850446,2432416646,13823276223,14055445313,19087920283, %U A072394 23804849568,36303512827,148868530953 %N A072394 Numbers n such that sigma(n)=reversal(n)-n. %C A072394 If (58*1000^n-169)/111 is prime then (58*1000^n-169)/37 is in the sequence (the proof is easy). Next term is greater than 12*10^8. - _Farideh Firoozbakht_, Jan 29 2006 %C A072394 From _Farideh Firoozbakht_, May 25 2010: (Start) %C A072394 If p = 156/101*(10^(4n)-1)-1 is prime then 91*p is in the sequence (the proof is easy). %C A072394 A178321 gives numbers n such that (58*1000^n-169)/111 = 58/111*(10^(3n)-1)-1 is prime and A178322 gives numbers n such that 156/101*(10^(4n)-1)-1 is prime. (End) %C A072394 a(19) > 10^12. - _Giovanni Resta_, Oct 28 2012 %e A072394 reverse(1563) - 1563 = 3651 - 1563 = 2088 = sigma(1563), so 1563 is a term of the sequence. %e A072394 376491249 is in the sequence because sigma(376491249)=565703424 =942194673-376491249=reversal(376491249)-376491249. %t A072394 Select[Range[10^6], FromDigits[Reverse[IntegerDigits[n]]] - # == DivisorSigma[1, # ] &] %t A072394 Do[If[DivisorSigma[1,n]==FromDigits[Reverse[IntegerDigits[n]]]- n,Print[n]],{n,1200000000}] (* _Farideh Firoozbakht_ *) %Y A072394 Cf. A072234. %Y A072394 Cf. A178321, A178322. [From _Farideh Firoozbakht_, May 25 2010] %K A072394 base,nonn %O A072394 1,1 %A A072394 _Joseph L. Pe_, Jul 21 2002 %E A072394 More terms from _Farideh Firoozbakht_, Jan 29 2006 %E A072394 a(11)-a(17) from _Donovan Johnson_, Dec 21 2008 %E A072394 a(18) from _Giovanni Resta_, Oct 28 2012